Skip to content

mhenrichsen/axolotl

 
 

Axolotl

axolotl

One repo to finetune them all!

Go ahead and axolotl questions!!

pre-commit PyTest Status

Axolotl supports

fp16/fp32 lora qlora gptq gptq w/ lora gptq w/flash attn flash attn xformers attn
llama
Pythia
cerebras
mpt
falcon
gpt-j
XGen

Quickstart ⚡

Requirements: Python >=3.9 and Pytorch >=2.0.

git clone https://github.com/OpenAccess-AI-Collective/axolotl

pip3 install -e .
pip3 install -U git+https://github.com/huggingface/peft.git

# finetune lora
accelerate launch scripts/finetune.py examples/openllama-3b/lora.yml

# inference
accelerate launch scripts/finetune.py examples/openllama-3b/lora.yml \
    --inference --lora_model_dir="./lora-out"

Installation

Environment

  • Docker

    docker run --gpus '"all"' --rm -it winglian/axolotl:main-py3.10-cu118-2.0.1
    • winglian/axolotl-runpod:main-py3.10-cu118-2.0.1: for runpod
    • winglian/axolotl-runpod:main-py3.9-cu118-2.0.1-gptq: for gptq

    Or run on the current files for development:

    docker compose up -d
  • Conda/Pip venv

    1. Install python 3.9

    2. Install pytorch stable https://pytorch.org/get-started/locally/

    3. Install python dependencies with ONE of the following:

      • Recommended, supports QLoRA, NO gptq/int4 support
        pip3 install -e .
        pip3 install -U git+https://github.com/huggingface/peft.git
      • gptq/int4 support, NO QLoRA
        pip3 install -e .[gptq]
      • same as above but not recommended
        pip3 install -e .[gptq_triton]
  • LambdaLabs

    Click to Expand
    1. Install python
    sudo apt update
    sudo apt install -y python3.9
    
    sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1
    sudo update-alternatives --config python # pick 3.9 if given option
    python -V # should be 3.9
    
    1. Install pip
    wget https://bootstrap.pypa.io/get-pip.py
    python get-pip.py
    1. Install torch
    pip3 install -U torch --index-url https://download.pytorch.org/whl/cu118
    1. Axolotl
    git clone https://github.com/OpenAccess-AI-Collective/axolotl
    cd axolotl
    
    pip3 install -e . # change depend on needs
    pip3 install protobuf==3.20.3
    pip3 install -U requests
    pip3 install -U --ignore-installed psutil
    pip3 install -U scipy
    pip3 install git+https://github.com/huggingface/peft.git # not for gptq
    1. Set path
    export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH

Dataset

Have dataset(s) in one of the following format (JSONL recommended):

  • alpaca: instruction; input(optional)
    {"instruction": "...", "input": "...", "output": "..."}
  • sharegpt:chat: conversations where from is human/gpt
    {"conversations": [{"from": "...", "value": "..."}]}
  • completion: raw corpus
    {"text": "..."}
See other formats
  • jeopardy: question and answer
    {"question": "...", "category": "...", "answer": "..."}
  • oasst: instruction
    {"INSTRUCTION": "...", "RESPONSE": "..."}
  • gpteacher: instruction; input(optional)
    {"instruction": "...", "input": "...", "response": "..."}
  • reflection: instruction with reflect; input(optional)
    {"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
  • explainchoice: question, choices, (solution OR explanation)
    {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
  • concisechoice: question, choices, (solution OR explanation)
    {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
  • summarizetldr: article and summary
    {"article": "...", "summary": "..."}
  • alpaca_chat: basic instruct for alpaca chat
    {"instruction": "...", "input": "...", "response": "..."}
  • alpaca_chat.load_qa: question and answer for alpaca chat
    {"question": "...", "answer": "..."}
  • alpaca_chat.load_concise: question and answer for alpaca chat, for concise answers
    {"instruction": "...", "input": "...", "response": "..."}
  • alpaca_chat.load_camel_ai: question and answer for alpaca chat, for load_camel_ai
    {"message_1": "...", "message_2": "..."}
  • alpaca_w_system.load_open_orca: support for open orca datasets with included system prompts, instruct
    {"system_prompt": "...", "question": "...", "response": "..."}
  • context_qa: in context question answering from an article
    {"article": "...", "question": "...", "answer": "..."}
  • context_qa.load_404: in context question answering from an article, with default response for no answer from context
    {"article": "...", "unanswerable_question": "..."}
  • creative_acr.load_answer: instruction and revision
    {"instruction": "...", "revision": "..."}
  • creative_acr.load_critique: critique
    {"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."}
  • creative_acr.load_revise: critique and revise
    {"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
  • pygmalion: pygmalion
    {"conversations": [{"role": "...", "value": "..."}]}
  • sharegpt_simple.load_role: conversations where role is used instead of from
    {"conversations": [{"role": "...", "value": "..."}]}
  • sharegpt_simple.load_guanaco: conversations where from is prompter/assistant instead of default sharegpt
    {"conversations": [{"from": "...", "value": "..."}]}
  • sharegpt_jokes: creates a chat where bot is asked to tell a joke, then explain why the joke is funny
    {"conversations": [{"title": "...", "text": "...", "explanation": "..."}]}

How to add custom prompts

  1. Add your method to a file in prompt_strategies. Please see other files as example.
  2. Use your custom file name as the dataset type <prompt_strategies_file>.load_<load_fn>.

Optionally, download some datasets, see data/README.md

Config

See examples for quick start. It is recommended to duplicate and modify to your needs. The most important options are:

  • model

    base_model: ./llama-7b-hf # local or huggingface repo

    Note: The code will load the right architecture.

  • dataset

    sequence_len: 2048 # max token length for prompt
    
    # huggingface repo
    datasets:
      - path: vicgalle/alpaca-gpt4
        type: alpaca # format from earlier
    
    # huggingface repo with specific configuration/subset
    datasets:
      - path: EleutherAI/pile
        name: enron_emails
        type: completion # format from earlier
    
    # local
    datasets:
      - path: json
        data_files: data.jsonl # or json
        type: alpaca # format from earlier
  • loading

    load_in_4bit: true
    load_in_8bit: true
    bf16: true # require >=ampere
    fp16: true
    tf32: true # require >=ampere
    bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision)
    float16: true # use instead of fp16 when you don't want AMP

    Note: Repo does not do 4-bit quantization.

  • lora

    adapter: lora # qlora or leave blank for full finetune
    lora_r: 8
    lora_alpha: 16
    lora_dropout: 0.05
    lora_target_modules:
      - q_proj
      - v_proj
All yaml options
# this is the huggingface model that contains *.pt, *.safetensors, or *.bin files
# this can also be a relative path to a model on disk
base_model: ./llama-7b-hf
# you can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
base_model_ignore_patterns:
# if the base_model repo on hf hub doesn't include configuration .json files,
# you can set that here, or leave this empty to default to base_model
base_model_config: ./llama-7b-hf
# you can specify to choose a specific model revision from huggingface hub
model_revision:
# Optional tokenizer configuration override in case you want to use a different tokenizer
# than the one defined in the base model
tokenizer_config:
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
model_type: AutoModelForCausalLM
# Corresponding tokenizer for the model AutoTokenizer is a good choice
tokenizer_type: AutoTokenizer
# Trust remote code for untrusted source
trust_remote_code:
# use_fast option for tokenizer loading from_pretrained, default to True
tokenizer_use_fast:
# Whether to use the legacy tokenizer setting, defaults to True
tokenizer_legacy:
# resize the model embeddings when new tokens are added to multiples of 32
# this is reported to improve training speed on some models
resize_token_embeddings_to_32x:

# whether you are training a 4-bit GPTQ quantized model
gptq: true
gptq_groupsize: 128 # group size
gptq_model_v1: false # v1 or v2

# this will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
load_in_8bit: true
# use bitsandbytes 4 bit
load_in_4bit:

# Use CUDA bf16
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
# Use CUDA fp16
fp16: true
# Use CUDA tf32
tf32: true # require >=ampere

# a list of one or more datasets to finetune the model with
datasets:
  # hf dataset repo | "json" for local dataset, make sure to fill data_files
  - path: vicgalle/alpaca-gpt4
  # The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
    type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>
    data_files: # path to source data files
    shards: # number of shards to split data into
    name: # name of dataset configuration to load

# axolotl attempts to save the dataset as an arrow after packing the data together so
# subsequent training attempts load faster, relative path
dataset_prepared_path: data/last_run_prepared
# push prepared dataset to hub
push_dataset_to_hub: # repo path
# push checkpoints to hub
hub_model_id: # repo path to push finetuned model
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy:
# whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: # boolean
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
val_set_size: 0.04
# Num shards for whole dataset
dataset_shard_num:
# Index of shard to use for whole dataset
dataset_shard_idx:

# the maximum length of an input to train with, this should typically be less than 2048
# as most models have a token/context limit of 2048
sequence_len: 2048
# max sequence length to concatenate training samples together up to
# inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning
# FutureWarning: This will soon be DEPRECATED
max_packed_sequence_len: 1024
# use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
sample_packing:
# you can set these packing optimizations AFTER starting a training at least once.
# The trainer will provide recommended values for these values.
sample_packing_eff_est:
total_num_tokens:

# if you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
adapter: lora
# if you already have a lora model trained that you want to load, put that here
# lora hyperparameters
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
  - q_proj
  - v_proj
#  - k_proj
#  - o_proj
#  - gate_proj
#  - down_proj
#  - up_proj
lora_target_linear: # if true, will target all linear layers
lora_modules_to_save:
#  - embed_tokens
#  - lm_head
lora_out_dir:
lora_fan_in_fan_out: false

# wandb configuration if you're using it
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
wandb_project: # your wandb project name
wandb_entity: # a wandb Team name if using a Team
wandb_watch:
wandb_run_id: # set the name of your wandb run
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training

# where to save the finished model to
output_dir: ./completed-model

# training hyperparameters
gradient_accumulation_steps: 1
micro_batch_size: 2
eval_batch_size: 2
num_epochs: 3
warmup_steps: 100
learning_rate: 0.00003
logging_steps:
save_steps: # leave empty to save at each epoch
eval_steps:
save_total_limit: # checkpoints saved at a time
max_steps:

# save model as safetensors (require safetensors package)
save_safetensors:

# whether to mask out or include the human's prompt from the training labels
train_on_inputs: false
# group similarly sized data to minimize padding
# may be slower to start, as it must download and sort the entire dataset
# note that training loss may have an oscillating pattern with this enabled
group_by_length: false

# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
gradient_checkpointing: false

# stop training after this many evaluation losses have increased in a row
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
early_stopping_patience: 3

# specify a scheduler and kwargs to use with the optimizer
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
lr_scheduler_kwargs:

# for one_cycle optim
lr_div_factor: # learning rate div factor

# for log_sweep optim
log_sweep_min_lr:
log_sweep_max_lr:

# specify optimizer
optimizer:
# specify weight decay
weight_decay:
# adamw hyperparams
adam_beta1:
adam_beta2:
adam_epsilon:
# Gradient clipping max norm
max_grad_norm:

# whether to bettertransformers
flash_optimum:
# whether to use xformers attention patch https://github.com/facebookresearch/xformers:
xformers_attention:
# whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
flash_attention:
# whether to use scaled-dot-product attention
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
sdp_attention:
# Landmark attention (only llama)
landmark_attention:
# xpos RoPE see https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py
# llama only
xpos_rope:
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653
rope_scaling:
  type: # linear | dynamic
  factor: # float

# resume from a specific checkpoint dir
resume_from_checkpoint:
# if resume_from_checkpoint isn't set and you simply want it to start where it left off
# be careful with this being turned on between different models
auto_resume_from_checkpoints: false

# don't mess with this, it's here for accelerate and torchrun
local_rank:

# add or change special tokens
special_tokens:
  # bos_token: "<s>"
  # eos_token: "</s>"
  # unk_token: "<unk>"
# add extra tokens
tokens:

# FSDP
fsdp:
fsdp_config:

# Deepspeed config path
deepspeed:

# Path to torch distx for optim 'adamw_anyprecision'
torchdistx_path:

# Set padding for data collator to 'longest'
collator_pad_to_longest:

# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize
pretraining_dataset:

# Debug mode
debug:

# Seed
seed:

# Allow overwrite yml config using from cli
strict:

Train

Run

accelerate launch scripts/finetune.py configs/your_config.yml

Multi-GPU

You can optionally pre-tokenize dataset with the following before finetuning:

CUDA_VISIBLE_DEVICES="" accelerate ... --prepare_ds_only
Config
  • llama FSDP
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_offload_params: true
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  • llama Deepspeed
deepspeed: # path to config
Weights & Biases Logging
  • wandb options
wandb_mode:
wandb_project:
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:

Inference

Pass the appropriate flag to the train command:

  • Pretrained LORA:
    --inference --lora_model_dir="./lora-output-dir"
  • Full weights finetune:
    --inference --base_model="./completed-model"
  • Full weights finetune w/ a prompt from a text file:
    cat /tmp/prompt.txt | python scripts/finetune.py configs/your_config.yml \
      --base_model="./completed-model" --inference --prompter=None --load_in_8bit=True

Merge LORA to base

Add below flag to train command above

--merge_lora --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False

If you run out of CUDA memory, you can try to merge in system RAM with

CUDA_VISIBLE_DEVICES="" python3 scripts/finetune.py ...

Common Errors 🧰

Cuda out of memory

Please reduce any below

  • micro_batch_size
  • eval_batch_size
  • gradient_accumulation_steps
  • sequence_len

RuntimeError: expected scalar type Float but found Half

Try set fp16: true

NotImplementedError: No operator found for memory_efficient_attention_forward ...

Try to turn off xformers.

accelerate config missing

It's safe to ignore it.

Need help? 🙋♂️

Join our Discord server where we can help you

Badge ❤🏷️

Building something cool with Axolotl? Consider adding a badge to your model card.

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

Built with Axolotl

Community Showcase

Open Access AI Collective

PocketDoc Labs

Contributing 🤝

Please read the contributing guide

Bugs? Please check the open issues else create a new Issue.

PRs are greatly welcome!

Please run below to setup env

pip3 install -r requirements-dev.txt -r requirements-tests.txt
pre-commit install

# test
pytest tests/

About

Go ahead and axolotl questions

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.5%
  • Other 0.5%