Skip to content

Commit

Permalink
Update README.zho.md
Browse files Browse the repository at this point in the history
  • Loading branch information
tangyc1234 authored Mar 18, 2024
1 parent 7f467cb commit 6d42da1
Showing 1 changed file with 9 additions and 10 deletions.
19 changes: 9 additions & 10 deletions lessons/3-NeuralNetworks/README.zho.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,18 +31,17 @@
----|----
Real Neuron *([Image](https://en.wikipedia.org/wiki/Synapse#/media/File:SynapseSchematic_lines.svg) from Wikipedia)* | Artificial Neuron *(Image by Author)*

Thus, the simplest mathematical model of a neuron contains several inputs X<sub>1</sub>, ..., X<sub>N</sub> and an output Y, and a series of weights W<sub>1</sub>, ..., W<sub>N</sub>. An output is calculated as:

因此,神经元最简单的数学模型包含几个输入端 X<sub>1</sub>, ..., X<sub>N</sub> 和输出 Y,以及一系列权重 W<sub>1</sub>, ..., W<sub>N</sub>. 输出计算公式为
:
<img src="images/netout.png" alt="Y = f\left(\sum_{i=1}^N X_iW_i\right)" width="131" height="53" align="center"/>

where f is some non-linear **activation function**.

> Early models of neuron were described in the classical paper [A logical calculus of the ideas immanent in nervous activity](http://www.springerlink.com/content/61446605110620kg/fulltext.pdf) by Warren McCullock and Walter Pitts in 1943. Donald Hebb in his book "[The Organization of Behavior: A Neuropsychological Theory](https://books.google.com/books?id=VNetYrB8EBoC)" proposed the way those networks can be trained.
其中,f 是某个非线性**激活函数**

## In this Section
> 沃伦-麦卡洛克(Warren McCullock)和沃尔特-皮茨(Walter Pitts)在 1943 年发表的经典论文[神经活动中蕴含的思想的逻辑演算](http://www.springerlink.com/content/61446605110620kg/fulltext.pdf)中描述了神经元的早期模型。唐纳德-赫伯(Donald Hebb)在其著作《行为的组织:神经心理学理论》(https://books.google.com/books?id=VNetYrB8EBoC)中提出了训练这些网络的方法。
## 在本节中

In this section we will learn about:
* [Perceptron](03-Perceptron/README.md), one of the earliest neural network models for two-class classification
* [Multi-layered networks](04-OwnFramework/README.md) with a paired notebook [how to build our own framework](04-OwnFramework/OwnFramework.ipynb)
* [Neural Network Frameworks](05-Frameworks/README.md), with these notebooks: [PyTorch](05-Frameworks/IntroPyTorch.ipynb) and [Keras/Tensorflow](05-Frameworks/IntroKerasTF.ipynb)
在本节中,我们将了解
* [感知器](03-Perceptron/README.md),最早的两类分类神经网络模型之一
* [多层网络](04-OwnFramework/README.md),配对笔记[如何构建我们自己的框架](04-OwnFramework/OwnFramework.ipynb)
* 神经网络框架](05-Frameworks/README.md),以及这些笔记: [PyTorch](05-Frameworks/IntroPyTorch.ipynb) [Keras/Tensorflow](05-Frameworks/IntroKerasTF.ipynb)
* [Overfitting](05-Frameworks/Overfitting.md)

0 comments on commit 6d42da1

Please sign in to comment.