-
Notifications
You must be signed in to change notification settings - Fork 252
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #545 from microsoft/PreRelease
Added AI4GAmazonRainforestv2 model
- Loading branch information
Showing
3 changed files
with
111 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
108 changes: 108 additions & 0 deletions
108
PytorchWildlife/models/classification/resnet/amazon_v2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
|
||
import torch | ||
from .base_classifier import PlainResNetInference | ||
|
||
__all__ = [ | ||
"AI4GAmazonRainforest_v2" | ||
] | ||
|
||
|
||
class AI4GAmazonRainforest_v2(PlainResNetInference): | ||
""" | ||
Amazon Ranforest Animal Classifier that inherits from PlainResNetInference. | ||
This classifier is specialized for recognizing 36 different animals in the Amazon Rainforest. | ||
""" | ||
|
||
# Image size for the Opossum classifier | ||
IMAGE_SIZE = 224 | ||
|
||
# Class names for prediction | ||
CLASS_NAMES = { | ||
0: 'Dasyprocta', | ||
1: 'Bos', | ||
2: 'Pecari', | ||
3: 'Mazama', | ||
4: 'Cuniculus', | ||
5: 'Leptotila', | ||
6: 'Human', | ||
7: 'Aramides', | ||
8: 'Tinamus', | ||
9: 'Eira', | ||
10: 'Crax', | ||
11: 'Procyon', | ||
12: 'Capra', | ||
13: 'Dasypus', | ||
14: 'Sciurus', | ||
15: 'Crypturellus', | ||
16: 'Tamandua', | ||
17: 'Proechimys', | ||
18: 'Leopardus', | ||
19: 'Equus', | ||
20: 'Columbina', | ||
21: 'Nyctidromus', | ||
22: 'Ortalis', | ||
23: 'Emballonura', | ||
24: 'Odontophorus', | ||
25: 'Geotrygon', | ||
26: 'Metachirus', | ||
27: 'Catharus', | ||
28: 'Cerdocyon', | ||
29: 'Momotus', | ||
30: 'Tapirus', | ||
31: 'Canis', | ||
32: 'Furnarius', | ||
33: 'Didelphis', | ||
34: 'Sylvilagus', | ||
35: 'Unknown' | ||
} | ||
|
||
def __init__(self, weights=None, device="cpu", pretrained=True): | ||
""" | ||
Initialize the Amazon animal Classifier. | ||
Args: | ||
weights (str, optional): Path to the model weights. Defaults to None. | ||
device (str, optional): Device for model inference. Defaults to "cpu". | ||
pretrained (bool, optional): Whether to use pretrained weights. Defaults to True. | ||
""" | ||
|
||
# If pretrained, use the provided URL to fetch the weights | ||
if pretrained: | ||
url = "https://zenodo.org/records/14252214/files/AI4GAmazonDeforestationv2?download=1" | ||
else: | ||
url = None | ||
|
||
super(AI4GAmazonRainforest_v2, self).__init__(weights=weights, device=device, | ||
num_cls=36, num_layers=50, url=url) | ||
|
||
def results_generation(self, logits, img_ids, id_strip=None): | ||
""" | ||
Generate results for classification. | ||
Args: | ||
logits (torch.Tensor): Output tensor from the model. | ||
img_id (str): Image identifier. | ||
id_strip (str): stiping string for better image id saving. | ||
Returns: | ||
dict: Dictionary containing image ID, prediction, and confidence score. | ||
""" | ||
|
||
probs = torch.softmax(logits, dim=1) | ||
preds = probs.argmax(dim=1) | ||
confs = probs.max(dim=1)[0] | ||
confidences = probs[0].tolist() | ||
result = [[self.CLASS_NAMES[i], confidence] for i, confidence in enumerate(confidences)] | ||
|
||
results = [] | ||
for pred, img_id, conf in zip(preds, img_ids, confs): | ||
r = {"img_id": str(img_id).strip(id_strip)} | ||
r["prediction"] = self.CLASS_NAMES[pred.item()] | ||
r["class_id"] = pred.item() | ||
r["confidence"] = conf.item() | ||
r["all_confidences"] = result | ||
results.append(r) | ||
|
||
return results |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters