Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[torchlib] Make binary comparison ops and more traceable #1957

Merged
merged 8 commits into from
Nov 19, 2024

Conversation

justinchuby
Copy link
Collaborator

ge, gt, le, lt

@justinchuby justinchuby added topic: torch_lib Related to the torch/aten function lib in development merge at lgtm Reviewers can merge when they approve labels Nov 19, 2024
@justinchuby justinchuby enabled auto-merge (squash) November 19, 2024 04:51
Copy link

codecov bot commented Nov 19, 2024

❌ 12 Tests Failed:

Tests completed Failed Passed Skipped
12380 12 12368 1202
View the full list of 3 ❄️ flaky tests
tests.eager_mode_test.TestEagerModeArguments_0_reference_runtime::test_function_input_and_attribute_by_kwargs_out_of_order

Flake rate in main: 39.48% (Passed 8834 times, Failed 5763 times)

Stack Traces | 0.002s run time
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:91: in run
    res = self._run(x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:139: in _run
    res = (convert_from_ml_dtypes(res[0]),)
..../test_torch_nightly/lib/python3.12.../onnx/reference/custom_element_types.py:50: in convert_from_ml_dtypes
    return array.view(dtype=dtype)
E   ValueError: Changing the dtype of a 0d array is only supported if the itemsize is unchanged

The above exception was the direct cause of the following exception:
tests/eager_mode_test.py:115: in test_function_input_and_attribute_by_kwargs_out_of_order
    self.assertEqual(add_with_alpha(alpha=3.0, other=2.0, this=1.0), 7.0)
onnxscript/values.py:576: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:307: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
tests/eager_mode_test.py:59: in add_with_alpha
    other = op.Mul(other, alpha)
.../onnx_opset/_impl/opset14.py:696: in Mul
    return op(*self._prepare_inputs(schema, A, B))
onnxscript/values.py:304: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:524: in _eval
    result = session.run(None, session_run_input)
..../test_torch_nightly/lib/python3.12.../onnx/reference/reference_evaluator.py:599: in run
    outputs = node.run(*inputs, **linked_attributes)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:114: in run
    res = OpRunBinary.run(self, x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:93: in run
    raise TypeError(
E   TypeError: Issues with types <class 'numpy.ndarray'>, <class 'numpy.ndarray'> (binary operator 'Mul').
tests.eager_mode_test.TestEagerModeArguments_0_reference_runtime::test_function_some_input_by_kwargs

Flake rate in main: 39.48% (Passed 8834 times, Failed 5763 times)

Stack Traces | 0.002s run time
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:91: in run
    res = self._run(x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:139: in _run
    res = (convert_from_ml_dtypes(res[0]),)
..../test_torch_nightly/lib/python3.12.../onnx/reference/custom_element_types.py:50: in convert_from_ml_dtypes
    return array.view(dtype=dtype)
E   ValueError: Changing the dtype of a 0d array is only supported if the itemsize is unchanged

The above exception was the direct cause of the following exception:
tests/eager_mode_test.py:106: in test_function_some_input_by_kwargs
    self.assertEqual(add_with_alpha(1.0, other=2.0), 3.0)
onnxscript/values.py:576: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:307: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
tests/eager_mode_test.py:59: in add_with_alpha
    other = op.Mul(other, alpha)
.../onnx_opset/_impl/opset14.py:696: in Mul
    return op(*self._prepare_inputs(schema, A, B))
onnxscript/values.py:304: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:524: in _eval
    result = session.run(None, session_run_input)
..../test_torch_nightly/lib/python3.12.../onnx/reference/reference_evaluator.py:599: in run
    outputs = node.run(*inputs, **linked_attributes)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:114: in run
    res = OpRunBinary.run(self, x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:93: in run
    raise TypeError(
E   TypeError: Issues with types <class 'numpy.ndarray'>, <class 'numpy.ndarray'> (binary operator 'Mul').
tests.eager_mode_test.TestEagerModeArguments_0_reference_runtime::test_function_attribute_by_positional_args

Flake rate in main: 39.48% (Passed 8834 times, Failed 5763 times)

Stack Traces | 0.002s run time
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:91: in run
    res = self._run(x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:139: in _run
    res = (convert_from_ml_dtypes(res[0]),)
..../test_torch_nightly/lib/python3.12.../onnx/reference/custom_element_types.py:50: in convert_from_ml_dtypes
    return array.view(dtype=dtype)
E   ValueError: Changing the dtype of a 0d array is only supported if the itemsize is unchanged

The above exception was the direct cause of the following exception:
tests/eager_mode_test.py:112: in test_function_attribute_by_positional_args
    self.assertEqual(add_with_alpha(1.0, 2.0, 3.0), 7.0)
onnxscript/values.py:576: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:307: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
tests/eager_mode_test.py:59: in add_with_alpha
    other = op.Mul(other, alpha)
.../onnx_opset/_impl/opset14.py:696: in Mul
    return op(*self._prepare_inputs(schema, A, B))
onnxscript/values.py:304: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:524: in _eval
    result = session.run(None, session_run_input)
..../test_torch_nightly/lib/python3.12.../onnx/reference/reference_evaluator.py:599: in run
    outputs = node.run(*inputs, **linked_attributes)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:114: in run
    res = OpRunBinary.run(self, x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:93: in run
    raise TypeError(
E   TypeError: Issues with types <class 'numpy.ndarray'>, <class 'numpy.ndarray'> (binary operator 'Mul').

To view more test analytics, go to the Test Analytics Dashboard
Got feedback? Let us know on Github

@justinchuby justinchuby changed the title [torchlib] Make binary comparison ops traceable [torchlib] Make binary comparison ops and more traceable Nov 19, 2024
@justinchuby justinchuby enabled auto-merge (squash) November 19, 2024 18:22
@justinchuby justinchuby merged commit 5c62178 into main Nov 19, 2024
26 of 41 checks passed
@justinchuby justinchuby deleted the justinchu/trace-gt branch November 19, 2024 18:39
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
merge at lgtm Reviewers can merge when they approve topic: torch_lib Related to the torch/aten function lib in development
Projects
Development

Successfully merging this pull request may close these issues.

2 participants