-
Notifications
You must be signed in to change notification settings - Fork 353
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
223 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
model: | ||
class_path: ChangeDetectionTask | ||
init_args: | ||
loss: 'ce' | ||
model: 'unet' | ||
backbone: 'resnet18' | ||
in_channels: 13 | ||
num_classes: 2 | ||
ignore_index: 0 | ||
data: | ||
class_path: OSCDDataModule | ||
init_args: | ||
batch_size: 2 | ||
patch_size: 16 | ||
val_split_pct: 0.5 | ||
dict_kwargs: | ||
root: 'tests/data/oscd' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
|
||
import os | ||
from pathlib import Path | ||
from typing import Any, cast | ||
|
||
import pytest | ||
import segmentation_models_pytorch as smp | ||
import timm | ||
import torch | ||
import torch.nn as nn | ||
from lightning.pytorch import Trainer | ||
from pytest import MonkeyPatch | ||
from torch.nn.modules import Module | ||
from torchvision.models._api import WeightsEnum | ||
|
||
from torchgeo.datamodules import MisconfigurationException, SEN12MSDataModule | ||
from torchgeo.datasets import RGBBandsMissingError | ||
from torchgeo.main import main | ||
from torchgeo.models import ResNet18_Weights | ||
from torchgeo.trainers import ChangeDetectionTask | ||
|
||
|
||
class ChangeDetectionTestModel(Module): | ||
def __init__(self, in_channels: int = 3, classes: int = 3, **kwargs: Any) -> None: | ||
super().__init__() | ||
self.conv1 = nn.Conv2d( | ||
in_channels=in_channels, out_channels=classes, kernel_size=1, padding=0 | ||
) | ||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
return cast(torch.Tensor, self.conv1(x)) | ||
|
||
|
||
def create_model(**kwargs: Any) -> Module: | ||
return ChangeDetectionTestModel(**kwargs) | ||
|
||
|
||
def plot(*args: Any, **kwargs: Any) -> None: | ||
return None | ||
|
||
|
||
def plot_missing_bands(*args: Any, **kwargs: Any) -> None: | ||
raise RGBBandsMissingError() | ||
|
||
|
||
class TestChangeDetectionTask: | ||
@pytest.mark.parametrize('name', ['oscd']) | ||
def test_trainer( | ||
self, monkeypatch: MonkeyPatch, name: str, fast_dev_run: bool | ||
) -> None: | ||
config = os.path.join('tests', 'conf', name + '.yaml') | ||
|
||
monkeypatch.setattr(smp, 'Unet', create_model) | ||
monkeypatch.setattr(smp, 'DeepLabV3Plus', create_model) | ||
|
||
args = [ | ||
'--config', | ||
config, | ||
'--trainer.accelerator', | ||
'cpu', | ||
'--trainer.fast_dev_run', | ||
str(fast_dev_run), | ||
'--trainer.max_epochs', | ||
'1', | ||
'--trainer.log_every_n_steps', | ||
'1', | ||
] | ||
|
||
main(['fit', *args]) | ||
try: | ||
main(['test', *args]) | ||
except MisconfigurationException: | ||
pass | ||
try: | ||
main(['predict', *args]) | ||
except MisconfigurationException: | ||
pass | ||
|
||
@pytest.fixture | ||
def weights(self) -> WeightsEnum: | ||
return ResNet18_Weights.SENTINEL2_ALL_MOCO | ||
|
||
@pytest.fixture | ||
def mocked_weights( | ||
self, | ||
tmp_path: Path, | ||
monkeypatch: MonkeyPatch, | ||
weights: WeightsEnum, | ||
load_state_dict_from_url: None, | ||
) -> WeightsEnum: | ||
path = tmp_path / f'{weights}.pth' | ||
model = timm.create_model( | ||
weights.meta['model'], in_chans=weights.meta['in_chans'] | ||
) | ||
torch.save(model.state_dict(), path) | ||
try: | ||
monkeypatch.setattr(weights.value, 'url', str(path)) | ||
except AttributeError: | ||
monkeypatch.setattr(weights, 'url', str(path)) | ||
return weights | ||
|
||
def test_weight_file(self, checkpoint: str) -> None: | ||
ChangeDetectionTask(backbone='resnet18', weights=checkpoint, num_classes=6) | ||
|
||
def test_weight_enum(self, mocked_weights: WeightsEnum) -> None: | ||
ChangeDetectionTask( | ||
backbone=mocked_weights.meta['model'], | ||
weights=mocked_weights, | ||
in_channels=mocked_weights.meta['in_chans'], | ||
) | ||
|
||
def test_weight_str(self, mocked_weights: WeightsEnum) -> None: | ||
ChangeDetectionTask( | ||
backbone=mocked_weights.meta['model'], | ||
weights=str(mocked_weights), | ||
in_channels=mocked_weights.meta['in_chans'], | ||
) | ||
|
||
@pytest.mark.slow | ||
def test_weight_enum_download(self, weights: WeightsEnum) -> None: | ||
ChangeDetectionTask( | ||
backbone=weights.meta['model'], | ||
weights=weights, | ||
in_channels=weights.meta['in_chans'], | ||
) | ||
|
||
@pytest.mark.slow | ||
def test_weight_str_download(self, weights: WeightsEnum) -> None: | ||
ChangeDetectionTask( | ||
backbone=weights.meta['model'], | ||
weights=str(weights), | ||
in_channels=weights.meta['in_chans'], | ||
) | ||
|
||
def test_invalid_model(self) -> None: | ||
match = "Model type 'invalid_model' is not valid." | ||
with pytest.raises(ValueError, match=match): | ||
ChangeDetectionTask(model='invalid_model') | ||
|
||
def test_invalid_loss(self) -> None: | ||
match = "Loss type 'invalid_loss' is not valid." | ||
with pytest.raises(ValueError, match=match): | ||
ChangeDetectionTask(loss='invalid_loss') | ||
|
||
def test_no_plot_method(self, monkeypatch: MonkeyPatch, fast_dev_run: bool) -> None: | ||
monkeypatch.setattr(SEN12MSDataModule, 'plot', plot) | ||
datamodule = SEN12MSDataModule( | ||
root='tests/data/sen12ms', batch_size=1, num_workers=0 | ||
) | ||
model = ChangeDetectionTask(backbone='resnet18', in_channels=15, num_classes=6) | ||
trainer = Trainer( | ||
accelerator='cpu', | ||
fast_dev_run=fast_dev_run, | ||
log_every_n_steps=1, | ||
max_epochs=1, | ||
) | ||
trainer.validate(model=model, datamodule=datamodule) | ||
|
||
def test_no_rgb(self, monkeypatch: MonkeyPatch, fast_dev_run: bool) -> None: | ||
monkeypatch.setattr(SEN12MSDataModule, 'plot', plot_missing_bands) | ||
datamodule = SEN12MSDataModule( | ||
root='tests/data/sen12ms', batch_size=1, num_workers=0 | ||
) | ||
model = ChangeDetectionTask(backbone='resnet18', in_channels=15, num_classes=6) | ||
trainer = Trainer( | ||
accelerator='cpu', | ||
fast_dev_run=fast_dev_run, | ||
log_every_n_steps=1, | ||
max_epochs=1, | ||
) | ||
trainer.validate(model=model, datamodule=datamodule) | ||
|
||
@pytest.mark.parametrize('model_name', ['unet']) | ||
@pytest.mark.parametrize( | ||
'backbone', ['resnet18', 'mobilenet_v2', 'efficientnet-b0'] | ||
) | ||
def test_freeze_backbone(self, model_name: str, backbone: str) -> None: | ||
model = ChangeDetectionTask( | ||
model=model_name, backbone=backbone, freeze_backbone=True | ||
) | ||
assert all( | ||
[param.requires_grad is False for param in model.model.encoder.parameters()] | ||
) | ||
assert all([param.requires_grad for param in model.model.decoder.parameters()]) | ||
assert all( | ||
[ | ||
param.requires_grad | ||
for param in model.model.segmentation_head.parameters() | ||
] | ||
) | ||
|
||
@pytest.mark.parametrize('model_name', ['unet']) | ||
def test_freeze_decoder(self, model_name: str) -> None: | ||
model = ChangeDetectionTask(model=model_name, freeze_decoder=True) | ||
assert all( | ||
[param.requires_grad is False for param in model.model.decoder.parameters()] | ||
) | ||
assert all([param.requires_grad for param in model.model.encoder.parameters()]) | ||
assert all( | ||
[ | ||
param.requires_grad | ||
for param in model.model.segmentation_head.parameters() | ||
] | ||
) |