This repository contains a comprehensive collection of AI-powered applications leveraging ChatGPT, Gemini and related technologies. Each project demonstrates different aspects of AI integration and practical applications.
Based on the repository structure, I'll provide a detailed analysis of each project:
A web-based content generation tool primarily built with HTML & PyQt5.
Key Features:
- Content generation interface
- Text formatting and styling options
- Article structure templates
- Export capabilities
Technical Implementation:
# Sample core generator structure
class ArticleGenerator:
def __init__(self, api_key):
self.api_key = api_key
def generate_article(self, topic, length, style):
# ChatGPT API integration for content generation
# Gemini API for fact-checking and enhancement
pass
def format_content(self, raw_content):
# Content structuring and formatting
pass
A conversational interface implementation.
Key Components:
- Chat interface (HTML/CSS)
- Message handling system
- Response generation
- Conversation state management
Technical Implementation:
class ChatBot:
def __init__(self):
self.conversation_history = []
def process_message(self, user_input):
# Message processing logic
# Context management
# Response generation using both ChatGPT and Gemini
pass
A demonstration project showing basic API integration.
Features:
- Basic API calls
- Response handling
- Example implementations
- Usage patterns
Sample Implementation:
class ChatGPTDemo:
def __init__(self):
self.models = {
'gpt': OpenAI(api_key=GPT_KEY),
'gemini': Gemini(api_key=GEMINI_KEY)
}
def demonstrate_basic_call(self, prompt):
# Basic API call demonstration
pass
Core API integration and utilities. The ChatgptAPI tool is to look for leaked openai apis on github.
Key Features:
- Authentication handling
- Request management
- Response processing
- Error handling
Implementation Structure:
class ChatGPTAPI:
def __init__(self, config):
self.config = config
self.session = self._initialize_session()
def make_request(self, endpoint, payload):
# API request handling
pass
An AI-powered code analysis and debugging tool.
Features:
- Code analysis
- Bug detection
- Fix suggestions
- Code optimization
Core Structure:
class CodeAnalyzer:
def __init__(self):
self.supported_languages = ['python', 'javascript', 'java']
def analyze_code(self, code, language):
# Code analysis implementation
pass
def suggest_fixes(self, issues):
# Fix suggestion generation
pass
Collection of miscellaneous GPT applications.
Applications Include:
- Text processors
- Data analyzers
- Utility tools
- Helper applications
AI-powered image generation system.
Features:
- Text-to-image generation
- Image modification
- Style transfer
- Format conversion
Implementation:
class ImageGenerator:
def __init__(self):
self.supported_formats = ['png', 'jpg', 'webp']
def generate_image(self, prompt, size, style):
# Image generation logic
pass
Python development tools and utilities.
Features:
- Code generation
- Refactoring tools
- Documentation generation
- Testing utilities
Core Structure:
class PythonDevelopmentTools:
def __init__(self):
self.tools = {
'generator': CodeGenerator(),
'analyzer': CodeAnalyzer(),
'formatter': CodeFormatter()
}
Automated response generation system.
Features:
- Email response generation
- Message template management
- Context analysis
- Tone adjustment
Implementation:
class ReplyGenerator:
def __init__(self):
self.templates = self._load_templates()
def generate_reply(self, input_message, tone, context):
# Reply generation logic
pass
Text summarization tool.
Features:
- Document summarization
- Key point extraction
- Length adjustment
- Format preservation
Core Structure:
class TextSummarizer:
def __init__(self):
self.models = {
'short': 'gpt-3.5-turbo',
'detailed': 'gpt-4'
}
def summarize(self, text, length='short', focus_points=None):
# Summarization logic
pass
API Integration:
class APIManager:
def __init__(self):
self.gpt_client = OpenAI(api_key=GPT_KEY)
self.gemini_client = Gemini(api_key=GEMINI_KEY)
def get_best_response(self, prompt, task_type):
# Model selection and response generation
pass
Error Handling:
class ErrorHandler:
@staticmethod
def handle_api_error(error):
# Common error handling logic
pass