Skip to content

This repository contains a diverse collection of AI-powered applications leveraging ChatGPT, Gemini, and related technologies. It showcases projects ranging from content generators and chatbots to code analyzers, image creators, and text summarizers, demonstrating various practical uses of these advanced AI models.

Notifications You must be signed in to change notification settings

mimi-netizen/ChatGPT-App-Development

Repository files navigation

ChatGPT Application Development Collection

This repository contains a comprehensive collection of AI-powered applications leveraging ChatGPT, Gemini and related technologies. Each project demonstrates different aspects of AI integration and practical applications.

Based on the repository structure, I'll provide a detailed analysis of each project:

Detailed Project Breakdown

1. ArticleGenerator

A web-based content generation tool primarily built with HTML & PyQt5.

Key Features:

  • Content generation interface
  • Text formatting and styling options
  • Article structure templates
  • Export capabilities

Technical Implementation:

# Sample core generator structure
class ArticleGenerator:
    def __init__(self, api_key):
        self.api_key = api_key

    def generate_article(self, topic, length, style):
        # ChatGPT API integration for content generation
        # Gemini API for fact-checking and enhancement
        pass

    def format_content(self, raw_content):
        # Content structuring and formatting
        pass

2. ChatGPTChatBot

A conversational interface implementation.

Key Components:

  • Chat interface (HTML/CSS)
  • Message handling system
  • Response generation
  • Conversation state management

Technical Implementation:

class ChatBot:
    def __init__(self):
        self.conversation_history = []

    def process_message(self, user_input):
        # Message processing logic
        # Context management
        # Response generation using both ChatGPT and Gemini
        pass

3. ChatGPTDemo

A demonstration project showing basic API integration.

Features:

  • Basic API calls
  • Response handling
  • Example implementations
  • Usage patterns

Sample Implementation:

class ChatGPTDemo:
    def __init__(self):
        self.models = {
            'gpt': OpenAI(api_key=GPT_KEY),
            'gemini': Gemini(api_key=GEMINI_KEY)
        }

    def demonstrate_basic_call(self, prompt):
        # Basic API call demonstration
        pass

4. ChatgptAPI

Core API integration and utilities. The ChatgptAPI tool is to look for leaked openai apis on github.

Key Features:

  • Authentication handling
  • Request management
  • Response processing
  • Error handling

Implementation Structure:

class ChatGPTAPI:
    def __init__(self, config):
        self.config = config
        self.session = self._initialize_session()

    def make_request(self, endpoint, payload):
        # API request handling
        pass

5. CodeBugFixing

An AI-powered code analysis and debugging tool.

Features:

  • Code analysis
  • Bug detection
  • Fix suggestions
  • Code optimization

Core Structure:

class CodeAnalyzer:
    def __init__(self):
        self.supported_languages = ['python', 'javascript', 'java']

    def analyze_code(self, code, language):
        # Code analysis implementation
        pass

    def suggest_fixes(self, issues):
        # Fix suggestion generation
        pass

6. GPTApps

Collection of miscellaneous GPT applications.

Applications Include:

  • Text processors
  • Data analyzers
  • Utility tools
  • Helper applications

7. ImageGenerator

AI-powered image generation system.

Features:

  • Text-to-image generation
  • Image modification
  • Style transfer
  • Format conversion

Implementation:

class ImageGenerator:
    def __init__(self):
        self.supported_formats = ['png', 'jpg', 'webp']

    def generate_image(self, prompt, size, style):
        # Image generation logic
        pass

8. PythonShop

Python development tools and utilities.

Features:

  • Code generation
  • Refactoring tools
  • Documentation generation
  • Testing utilities

Core Structure:

class PythonDevelopmentTools:
    def __init__(self):
        self.tools = {
            'generator': CodeGenerator(),
            'analyzer': CodeAnalyzer(),
            'formatter': CodeFormatter()
        }

9. ReplyTool

Automated response generation system.

Features:

  • Email response generation
  • Message template management
  • Context analysis
  • Tone adjustment

Implementation:

class ReplyGenerator:
    def __init__(self):
        self.templates = self._load_templates()

    def generate_reply(self, input_message, tone, context):
        # Reply generation logic
        pass

10. WordSummarizor

Text summarization tool.

Features:

  • Document summarization
  • Key point extraction
  • Length adjustment
  • Format preservation

Core Structure:

class TextSummarizer:
    def __init__(self):
        self.models = {
            'short': 'gpt-3.5-turbo',
            'detailed': 'gpt-4'
        }

    def summarize(self, text, length='short', focus_points=None):
        # Summarization logic
        pass

Common Technical Elements Across Projects

API Integration:

class APIManager:
    def __init__(self):
        self.gpt_client = OpenAI(api_key=GPT_KEY)
        self.gemini_client = Gemini(api_key=GEMINI_KEY)

    def get_best_response(self, prompt, task_type):
        # Model selection and response generation
        pass

Error Handling:

class ErrorHandler:
    @staticmethod
    def handle_api_error(error):
        # Common error handling logic
        pass

About

This repository contains a diverse collection of AI-powered applications leveraging ChatGPT, Gemini, and related technologies. It showcases projects ranging from content generators and chatbots to code analyzers, image creators, and text summarizers, demonstrating various practical uses of these advanced AI models.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published