-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathindex.html
115 lines (102 loc) · 6.22 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
<!DOCTYPE HTML>
<!--
Spatial by TEMPLATED
templated.co @templatedco
Released for free under the Creative Commons Attribution 3.0 license (templated.co/license)
-->
<html>
<head>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-ZBJBK6772F"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-ZBJBK6772F');
</script>
<link href="//fonts.googleapis.com/css?family=Crimson+Text:300italic,400italic|Roboto:300,400,300italic,400italic" rel="stylesheet">
<title>MEDG</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<script src="assets/js/jquery.min.js"></script>
<script src="assets/js/skel.min.js"></script>
<script src="assets/js/util.js"></script>
<script src="assets/js/main.js"></script>
<link rel="stylesheet" href="assets/css/main.css" />
</head>
<body class="landing">
<header id="header">
<h1><strong><a href="index.html"><font color="navy">MIT CSAIL MEDG</font></a></strong></h1>
<nav id="nav">
<ul>
<li><a href="index.html">Home</a></li>
<li><a href="people.html">People</a></li>
<li><a href="https://www.csail.mit.edu/research/clinical-decision-making-group#projects" target="_blank">Projects</a></li>
<li><a href="publications.html">Publications</a></li>
<li><a href="blogs.html">Blogs</a></li>
<li><a href="seminars.html">Seminars</a></li>
<li><a href="faq.html">FAQs</a></li>
<li><a href="https://groups.csail.mit.edu/medg/index_archive.html" target="_blank">Archive</a></li>
</ul>
</nav>
</header>
<a href="#menu" class="navPanelToggle"><span class="fa fa-bars"></span></a>
<section id="banner">
<h2>Welcome to MEDG </br>MIT CSAIL Clinical Decision Making Group</h2>
<p>Advancing computing technology to improve health care</p>
</section>
<section id="one" class="wrapper style1">
<div class="container 75%">
<div class="row 200%">
<div class="6u 12u$(medium)">
<header class="major">
<h2>We develop and apply advanced computing and artificial intelligence techniques to improve health care.</h2>
<p>The Clinical Decision Making Group (MEDG) at the MIT CSAIL is a research group headed by Professor Peter Szolovits. </br> We are dedicated to exploring and furthering the application of technology and artificial intelligence to clinical situations.</p>
</header>
</div>
<!-- Update here -->
<div class="6u$ 12u$(medium)">
<h2>MEDG News</h2>
<table>
<tbody>
<tr>
<td>
<b>Wei-Hung, Matthew, and Willie have completed their PhD thesis defenses. Congratulations!</b><br>
<i>04/2022</i>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</section>
<section id="two" class="wrapper style2 special">
<div class="container">
<h2>Our Missions</h2>
<p>The Clinical Decision Making Group at the MIT Laboratory for Computer Science is a research group dedicated to exploring and furthering the application of technology and artificial intelligence to clinical situations. Because of the vital and crucial nature of medical practice, and the need for accurate and timely information to support clinical decisions, the group is also focused on the gathering, availability, security and use of medical information throughout the human "life cycle" and beyond.</p>
<p>We collaborate closely with doctors and biomedical scientists. We derive knowledge from the growing set of patients' health records that note the natural histories of diseases and the outcomes of clinical care interventions. Such models can predict outcomes in new cases depending on what actions are chosen. Optimizing such choices enables recommendations for care that has the highest expected benefit.</p>
<p>As part of our approach, we use natural language processing methods to extract meaningful data from the clinical narratives that contain most observations made by doctors, nurses and other specialists. We apply a variety of machine learning techniques, including deep learning, matrix and tensor factorization, Gaussian processes, support vector machines, conditional random fields, logistic regression, Bayesian models, random forests, and reinforcement learning, and adapt them to the peculiar characteristics of clinical data. These include irregular sampling of data and observations, data that are not missing at random, narratives that are full of duplication, ambiguities and telegraphic abbreviations and elisions, data recorded by multiple instruments and people that are not well calibrated, etc.</p>
<p>We also work on related issues such as using personal health information systems to engage patients and families in care, augmenting classical clinical data sets with data from wearable instrumentation, social media reports, environmental exposures and the vastly expanding sets of genetic and genomic data. We have also contributed to advances in protecting patient privacy while allowing use of records for research, development of more flexible and supportive informational tools and interfaces, use of speech to interact with systems, etc.</p>
</div>
</section>
<section id="four" class="wrapper style3 special">
<div class="container">
<header class="major">
<h2>Contact Us</h2>
<p>Peter Szolovits, [email protected], (617) 253-3476</p>
<p>Fern Keniston, [email protected], (617) 253-5860</p></br>
<p>MIT Computer Science and Artificial Intelligence Laboratory,</br> 32 Vassar Street, 32-254, Cambridge, MA 02139, USA</p>
</header>
</div>
</section>
<footer id="footer">
<div class="container">
<ul class="copyright">
<li>© MIT CSAIL Medical Decision Making Group</li>
<li><a href="https://accessibility.mit.edu/">Accessibility</a></li>
<li><a href="http://templated.co">templated.co</a></li>
</ul>
</div>
</footer>
</body>
</html>