-
Notifications
You must be signed in to change notification settings - Fork 297
Add Olmo3 #445
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Add Olmo3 #445
Changes from 16 commits
Commits
Show all changes
17 commits
Select commit
Hold shift + click to select a range
3a29a7e
in. com.
Goekdeniz-Guelmez 022b616
done
Goekdeniz-Guelmez 508abd6
making it trainable
Goekdeniz-Guelmez 3087fc4
upd. ackn.
Goekdeniz-Guelmez 81fb4ce
format
Goekdeniz-Guelmez feefede
Merge branch 'main' into adding-olmo3
Goekdeniz-Guelmez 7014fe2
Merge branch 'main' into adding-olmo3
Goekdeniz-Guelmez e99b4ce
make tie_word_embeddings false
Goekdeniz-Guelmez b972ddc
fix index_id number
Goekdeniz-Guelmez 2cfa41c
default layer_types
Goekdeniz-Guelmez 7c2fa97
nits
Goekdeniz-Guelmez 1c268ff
working inference
Goekdeniz-Guelmez 857a520
finish
Goekdeniz-Guelmez 8fb0261
finish
Goekdeniz-Guelmez 97b8cd3
format
Goekdeniz-Guelmez 12b5623
nits
awni b3616b2
comment
awni File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,226 @@ | ||
| # Copyright © 2025 Apple Inc. | ||
|
|
||
| from dataclasses import dataclass | ||
| from typing import Any, Dict, List, Optional, Union | ||
|
|
||
| import mlx.core as mx | ||
| import mlx.nn as nn | ||
|
|
||
| from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention | ||
| from .rope_utils import initialize_rope | ||
|
|
||
|
|
||
| @dataclass | ||
| class ModelArgs(BaseModelArgs): | ||
| model_type: str | ||
| hidden_size: int | ||
| num_hidden_layers: int | ||
| intermediate_size: int | ||
| num_attention_heads: int | ||
| rms_norm_eps: float | ||
| vocab_size: int | ||
| max_position_embeddings: int | ||
| sliding_window: int | ||
| rope_theta: float | ||
| attention_bias: bool = False | ||
| layer_types: Optional[List[str]] = None | ||
| num_key_value_heads: Optional[int] = None | ||
| head_dim: Optional[int] = None | ||
| rope_scaling: Optional[Dict[str, Union[float, str]]] = None | ||
| tie_word_embeddings: bool = False | ||
|
|
||
| def __post_init__(self): | ||
| if self.num_key_value_heads is None: | ||
| self.num_key_value_heads = self.num_attention_heads | ||
| if self.layer_types is None: | ||
| self.layer_types = [ | ||
| "full_attention" if (i + 1) % 4 == 0 else "sliding_attention" | ||
| for i in range(self.num_hidden_layers) | ||
| ] | ||
|
|
||
|
|
||
| class Olmo3Attention(nn.Module): | ||
| def __init__(self, args: ModelArgs, layer_idx: int): | ||
| super().__init__() | ||
| self.num_attention_heads = args.num_attention_heads | ||
| self.num_key_value_heads = args.num_key_value_heads | ||
| self.layer_idx = layer_idx | ||
|
|
||
| self.head_dim = args.head_dim or args.hidden_size // args.num_attention_heads | ||
| self.scale = self.head_dim**-0.5 | ||
|
|
||
| self.q_proj = nn.Linear( | ||
| args.hidden_size, | ||
| args.num_attention_heads * self.head_dim, | ||
| bias=args.attention_bias, | ||
| ) | ||
| self.k_proj = nn.Linear( | ||
| args.hidden_size, | ||
| args.num_key_value_heads * self.head_dim, | ||
| bias=args.attention_bias, | ||
| ) | ||
| self.v_proj = nn.Linear( | ||
| args.hidden_size, | ||
| args.num_key_value_heads * self.head_dim, | ||
| bias=args.attention_bias, | ||
| ) | ||
| self.o_proj = nn.Linear( | ||
| args.num_attention_heads * self.head_dim, | ||
| args.hidden_size, | ||
| bias=args.attention_bias, | ||
| ) | ||
|
|
||
| self.q_norm = nn.RMSNorm( | ||
| args.num_attention_heads * self.head_dim, eps=args.rms_norm_eps | ||
| ) | ||
| self.k_norm = nn.RMSNorm( | ||
| args.num_key_value_heads * self.head_dim, eps=args.rms_norm_eps | ||
| ) | ||
| self.is_full = args.layer_types[layer_idx] == "full_attention" | ||
|
|
||
| if self.is_full: | ||
| self.rope = nn.RoPE(self.head_dim, traditional=False, base=args.rope_theta) | ||
| else: | ||
| self.rope = initialize_rope( | ||
| self.head_dim, | ||
| traditional=False, | ||
| base=args.rope_theta, | ||
| scaling_config=args.rope_scaling, | ||
| max_position_embeddings=args.max_position_embeddings, | ||
| ) | ||
|
|
||
| def __call__( | ||
| self, | ||
| x: mx.array, | ||
| mask: Optional[mx.array] = None, | ||
| cache: Optional[Any] = None, | ||
| ) -> mx.array: | ||
| B, L, _ = x.shape | ||
| queries = self.q_norm(self.q_proj(x)) | ||
| keys = self.k_norm(self.k_proj(x)) | ||
| values = self.v_proj(x) | ||
|
|
||
| queries = queries.reshape(B, L, self.num_attention_heads, -1).transpose( | ||
| 0, 2, 1, 3 | ||
| ) | ||
| keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3) | ||
| values = values.reshape(B, L, self.num_key_value_heads, -1).transpose( | ||
| 0, 2, 1, 3 | ||
| ) | ||
|
|
||
| if cache is not None: | ||
| queries = self.rope(queries, offset=cache.offset) | ||
| keys = self.rope(keys, offset=cache.offset) | ||
| keys, values = cache.update_and_fetch(keys, values) | ||
| else: | ||
| queries = self.rope(queries) | ||
| keys = self.rope(keys) | ||
|
|
||
| output = scaled_dot_product_attention( | ||
| queries, keys, values, cache=cache, scale=self.scale, mask=mask | ||
| ) | ||
| output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) | ||
| return self.o_proj(output) | ||
|
|
||
|
|
||
| class Olmo3MLP(nn.Module): | ||
| def __init__(self, args: ModelArgs): | ||
| super().__init__() | ||
| self.gate_proj = nn.Linear(args.hidden_size, args.intermediate_size, bias=False) | ||
| self.down_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=False) | ||
| self.up_proj = nn.Linear(args.hidden_size, args.intermediate_size, bias=False) | ||
|
|
||
| def __call__(self, x: mx.array) -> mx.array: | ||
| return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) | ||
|
|
||
|
|
||
| class Olmo3DecoderLayer(nn.Module): | ||
| def __init__(self, args: ModelArgs, layer_idx: int): | ||
| super().__init__() | ||
| self.num_attention_heads = args.num_attention_heads | ||
| self.hidden_size = args.hidden_size | ||
| self.self_attn = Olmo3Attention(args, layer_idx=layer_idx) | ||
| self.mlp = Olmo3MLP(args) | ||
| self.post_attention_layernorm = nn.RMSNorm( | ||
| args.hidden_size, eps=args.rms_norm_eps | ||
| ) | ||
| self.post_feedforward_layernorm = nn.RMSNorm( | ||
| args.hidden_size, eps=args.rms_norm_eps | ||
| ) | ||
| self.args = args | ||
|
|
||
| def __call__( | ||
| self, | ||
| x: mx.array, | ||
| mask: Optional[mx.array] = None, | ||
| cache: Optional[Any] = None, | ||
| ) -> mx.array: | ||
| r = self.post_attention_layernorm(self.self_attn(x, mask, cache)) | ||
| h = x + r | ||
| r = self.post_feedforward_layernorm(self.mlp(h)) | ||
| out = h + r | ||
| return out | ||
|
|
||
|
|
||
| class Olmo3Model(nn.Module): | ||
| def __init__(self, args: ModelArgs): | ||
| super().__init__() | ||
| self.sliding_window = args.sliding_window | ||
|
|
||
| self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) | ||
| self.layers = [ | ||
| Olmo3DecoderLayer(args=args, layer_idx=i) | ||
| for i in range(args.num_hidden_layers) | ||
| ] | ||
| self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) | ||
|
|
||
| self.swa_idx = args.layer_types.index("sliding_attention") | ||
| self.ga_idx = args.layer_types.index("full_attention") | ||
| self.layer_types = args.layer_types | ||
|
|
||
| def __call__( | ||
| self, | ||
| inputs: mx.array, | ||
| cache: Optional[Any] = None, | ||
| ) -> mx.array: | ||
| h = self.embed_tokens(inputs) | ||
|
|
||
| if cache is None: | ||
| cache = [None] * len(self.layers) | ||
|
|
||
| full_mask = create_attention_mask(h, cache[self.ga_idx]) | ||
| sliding_window_mask = create_attention_mask( | ||
| h, cache[self.swa_idx], window_size=self.sliding_window | ||
| ) | ||
|
|
||
| for layer, c, layer_type in zip(self.layers, cache, self.layer_types): | ||
| mask = full_mask if layer_type == "full_attention" else sliding_window_mask | ||
| h = layer(h, mask, cache=c) | ||
|
|
||
| return self.norm(h) | ||
|
|
||
|
|
||
| class Model(nn.Module): | ||
| def __init__(self, args: ModelArgs): | ||
| super().__init__() | ||
| self.args = args | ||
| self.model_type = args.model_type | ||
| self.model = Olmo3Model(args) | ||
| if not args.tie_word_embeddings: | ||
| self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) | ||
|
|
||
| def __call__( | ||
| self, | ||
| inputs: mx.array, | ||
| cache: Optional[Any] = None, | ||
| ) -> mx.array: | ||
| out = self.model(inputs, cache) | ||
| if self.args.tie_word_embeddings: | ||
| out = self.model.embed_tokens.as_linear(out) | ||
| else: | ||
| out = self.lm_head(out) | ||
| return out | ||
|
|
||
| @property | ||
| def layers(self): | ||
| return self.model.layers |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.