-
Notifications
You must be signed in to change notification settings - Fork 901
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1361 from lindapaiste/fix/xhr-to-axios
Rewrite XHR code using Axios
- Loading branch information
Showing
3 changed files
with
152 additions
and
136 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,68 +1,67 @@ | ||
/* eslint max-len: "off" */ | ||
|
||
import * as tf from '@tensorflow/tfjs'; | ||
import axios from 'axios'; | ||
|
||
/** | ||
* Pix2Pix loads data from a '.pict' file. | ||
* File contains the properties (name and tensor shape) for each variable | ||
* and a huge array of numbers for all of the variables. | ||
* Numbers must be assigned to the correct variable. | ||
*/ | ||
export default class CheckpointLoaderPix2pix { | ||
/** | ||
* @param {string} urlPath | ||
*/ | ||
constructor(urlPath) { | ||
/** | ||
* @type {string} | ||
*/ | ||
this.urlPath = urlPath; | ||
} | ||
|
||
getAllVariables() { | ||
return new Promise((resolve, reject) => { | ||
const weightsCache = {}; | ||
if (this.urlPath in weightsCache) { | ||
resolve(weightsCache[this.urlPath]); | ||
return; | ||
} | ||
|
||
const xhr = new XMLHttpRequest(); | ||
xhr.open('GET', this.urlPath, true); | ||
xhr.responseType = 'arraybuffer'; | ||
xhr.onload = () => { | ||
if (xhr.status !== 200) { | ||
reject(new Error('missing model')); | ||
return; | ||
} | ||
const buf = xhr.response; | ||
if (!buf) { | ||
reject(new Error('invalid arraybuffer')); | ||
return; | ||
} | ||
async getAllVariables() { | ||
// Load the file as an ArrayBuffer. | ||
const response = await axios.get(this.urlPath, { responseType: 'arraybuffer' }) | ||
.catch(error => { | ||
throw new Error(`No model found. Failed with error ${error}`); | ||
}); | ||
/** @type {ArrayBuffer} */ | ||
const buf = response.data; | ||
|
||
const parts = []; | ||
let offset = 0; | ||
while (offset < buf.byteLength) { | ||
const b = new Uint8Array(buf.slice(offset, offset + 4)); | ||
offset += 4; | ||
const len = (b[0] << 24) + (b[1] << 16) + (b[2] << 8) + b[3]; // eslint-disable-line no-bitwise | ||
parts.push(buf.slice(offset, offset + len)); | ||
offset += len; | ||
} | ||
// Break data into three parts: shapes, index, and encoded. | ||
/** @type {ArrayBuffer[]} */ | ||
const parts = []; | ||
let offset = 0; | ||
while (offset < buf.byteLength) { | ||
const b = new Uint8Array(buf.slice(offset, offset + 4)); | ||
offset += 4; | ||
const len = (b[0] << 24) + (b[1] << 16) + (b[2] << 8) + b[3]; // eslint-disable-line no-bitwise | ||
parts.push(buf.slice(offset, offset + len)); | ||
offset += len; | ||
} | ||
|
||
const shapes = JSON.parse((new TextDecoder('utf8')).decode(parts[0])); | ||
const index = new Float32Array(parts[1]); | ||
const encoded = new Uint8Array(parts[2]); | ||
/** @type {Array<{ name: string, shape: number[] }>} */ | ||
const shapes = JSON.parse((new TextDecoder('utf8')).decode(parts[0])); | ||
const index = new Float32Array(parts[1]); | ||
const encoded = new Uint8Array(parts[2]); | ||
|
||
// decode using index | ||
const arr = new Float32Array(encoded.length); | ||
for (let i = 0; i < arr.length; i += 1) { | ||
arr[i] = index[encoded[i]]; | ||
} | ||
// Dictionary of variables by name. | ||
/** @type {Record<string, tf.Tensor>} */ | ||
const weights = {}; | ||
|
||
const weights = {}; | ||
offset = 0; | ||
for (let i = 0; i < shapes.length; i += 1) { | ||
const { shape } = shapes[i]; | ||
const size = shape.reduce((total, num) => total * num); | ||
const values = arr.slice(offset, offset + size); | ||
const tfarr = tf.tensor1d(values, 'float32'); | ||
weights[shapes[i].name] = tfarr.reshape(shape); | ||
offset += size; | ||
} | ||
weightsCache[this.urlPath] = weights; | ||
resolve(weights); | ||
}; | ||
xhr.send(null); | ||
// Create a tensor for each shape. | ||
offset = 0; | ||
shapes.forEach(({ shape, name }) => { | ||
const size = shape.reduce((total, num) => total * num); | ||
// Get the raw data. | ||
const raw = encoded.slice(offset, offset + size); | ||
// Decode using index. | ||
const values = new Float32Array(raw.length); | ||
raw.forEach((value, i) => { | ||
values[i] = index[value]; | ||
}); | ||
weights[name] = tf.tensor(values, shape, 'float32'); | ||
offset += size; | ||
}); | ||
return weights; | ||
} | ||
} |