Skip to content

Commit

Permalink
Auto-merge updates from auto-update branch
Browse files Browse the repository at this point in the history
  • Loading branch information
mlcommons-bot committed Jan 1, 2025
2 parents d61af93 + e304216 commit 829a14a
Show file tree
Hide file tree
Showing 50 changed files with 20,371 additions and 20,403 deletions.
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops).

*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.*

## Host platform
Expand All @@ -19,7 +17,7 @@ pip install -U cmind

cm rm cache -f

cm pull repo mlcommons@mlperf-automations --checkout=a90475d2de72bf0622cebe8d5ca8eb8c9d872fbd
cm pull repo mlcommons@mlperf-automations --checkout=5faf15abe8521376226c9d408ed058bfca7ecdce

cm run script \
--tags=app,mlperf,inference,generic,_nvidia,_retinanet,_tensorrt,_cuda,_valid,_r4.1-dev_default,_multistream \
Expand All @@ -41,8 +39,8 @@ cm run script \
--env.CM_RUN_MLPERF_SUBMISSION_PREPROCESSOR=yes \
--env.CM_MLPERF_INFERENCE_PULL_CODE_CHANGES=yes \
--env.CM_MLPERF_INFERENCE_PULL_SRC_CHANGES=yes \
--env.OUTPUT_BASE_DIR=/home/arjun/gh_action_results \
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/home/arjun/gh_action_submissions \
--env.OUTPUT_BASE_DIR=/cm-mount/home/arjun/gh_action_results \
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/cm-mount/home/arjun/gh_action_submissions \
--env.CM_MLPERF_SUBMITTER=MLCommons \
--env.CM_USE_DATASET_FROM_HOST=yes \
--env.CM_USE_MODEL_FROM_HOST=yes \
Expand Down Expand Up @@ -71,7 +69,7 @@ cm run script \
--env.CM_DOCKER_REUSE_EXISTING_CONTAINER=yes \
--env.CM_DOCKER_DETACHED_MODE=yes \
--env.CM_MLPERF_INFERENCE_RESULTS_DIR_=/home/arjun/gh_action_results/valid_results \
--env.CM_DOCKER_CONTAINER_ID=a095b379b769 \
--env.CM_DOCKER_CONTAINER_ID=c6d3a1285d8f \
--env.CM_MLPERF_LOADGEN_COMPLIANCE_TEST=TEST01 \
--add_deps_recursive.compiler.tags=gcc \
--add_deps_recursive.coco2014-original.tags=_full \
Expand Down Expand Up @@ -104,13 +102,7 @@ cm run script \
--v=False \
--print_env=False \
--print_deps=False \
--dump_version_info=True \
--env.CM_DATASET_OPENIMAGES_PATH=/home/cmuser/CM/repos/local/cache/a606a3727a184f2d/install/validation/data \
--env.CM_OPENIMAGES_CALIBRATION_DATASET_PATH=/home/cmuser/CM/repos/local/cache/f15d1b6254ee45ab/install/calibration/data \
--env.CM_DATASET_OPENIMAGES_ANNOTATIONS_DIR_PATH=/home/cmuser/CM/repos/local/cache/fe39e632e1a04393 \
--env.OUTPUT_BASE_DIR=/cm-mount/home/arjun/gh_action_results \
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/cm-mount/home/arjun/gh_action_submissions \
--env.MLPERF_SCRATCH_PATH=/home/cmuser/CM/repos/local/cache/a8c152aef5494496
--dump_version_info=True
```
*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts),
you should simply reload mlcommons@mlperf-automations without checkout and clean CM cache as follows:*
Expand All @@ -129,7 +121,7 @@ Platform: RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config
Model Precision: int8

### Accuracy Results
`mAP`: `37.317`, Required accuracy for closed division `>= 37.1745`
`mAP`: `37.329`, Required accuracy for closed division `>= 37.1745`

### Performance Results
`Samples per query`: `11614264.0`
`Samples per query`: `11643760.0`
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
[2024-12-25 02:55:09,307 main.py:229 INFO] Detected system ID: KnownSystem.RTX4090x1
[2024-12-25 02:55:09,391 harness.py:249 INFO] The harness will load 2 plugins: ['build/plugins/NMSOptPlugin/libnmsoptplugin.so', 'build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so']
[2024-12-25 02:55:09,391 generate_conf_files.py:107 INFO] Generated measurements/ entries for RTX4090x1_TRT/retinanet/MultiStream
[2024-12-25 02:55:09,391 __init__.py:46 INFO] Running command: ./build/bin/harness_default --plugins="build/plugins/NMSOptPlugin/libnmsoptplugin.so,build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so" --logfile_outdir="/cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=64 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=2 --map_path="data_maps/open-images-v6-mlperf/val_map.txt" --mlperf_conf_path="/home/cmuser/CM/repos/local/cache/90c7069b92e34687/inference/mlperf.conf" --tensor_path="build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear" --use_graphs=true --user_conf_path="/home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/6d1a55124ae14cd5803848d8020fb9c7.conf" --gpu_engines="./build/engines/RTX4090x1/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan" --max_dlas=0 --scenario MultiStream --model retinanet --response_postprocess openimageeffnms
[2024-12-25 02:55:09,391 __init__.py:53 INFO] Overriding Environment
[2025-01-01 12:15:04,046 main.py:229 INFO] Detected system ID: KnownSystem.RTX4090x1
[2025-01-01 12:15:04,122 harness.py:249 INFO] The harness will load 2 plugins: ['build/plugins/NMSOptPlugin/libnmsoptplugin.so', 'build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so']
[2025-01-01 12:15:04,123 generate_conf_files.py:107 INFO] Generated measurements/ entries for RTX4090x1_TRT/retinanet/MultiStream
[2025-01-01 12:15:04,123 __init__.py:46 INFO] Running command: ./build/bin/harness_default --plugins="build/plugins/NMSOptPlugin/libnmsoptplugin.so,build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so" --logfile_outdir="/cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=64 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=2 --map_path="data_maps/open-images-v6-mlperf/val_map.txt" --mlperf_conf_path="/home/cmuser/CM/repos/local/cache/90c7069b92e34687/inference/mlperf.conf" --tensor_path="build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear" --use_graphs=true --user_conf_path="/home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/e0c851fbdc114c64acabadda142757a6.conf" --gpu_engines="./build/engines/RTX4090x1/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan" --max_dlas=0 --scenario MultiStream --model retinanet --response_postprocess openimageeffnms
[2025-01-01 12:15:04,123 __init__.py:53 INFO] Overriding Environment
benchmark : Benchmark.Retinanet
buffer_manager_thread_count : 0
data_dir : /home/cmuser/CM/repos/local/cache/a8c152aef5494496/data
Expand All @@ -12,7 +12,7 @@ gpu_copy_streams : 1
gpu_inference_streams : 1
input_dtype : int8
input_format : linear
log_dir : /home/cmuser/CM/repos/local/cache/ba8d5f2a6bc546f9/repo/closed/NVIDIA/build/logs/2024.12.25-02.55.08
log_dir : /home/cmuser/CM/repos/local/cache/ba8d5f2a6bc546f9/repo/closed/NVIDIA/build/logs/2025.01.01-12.15.03
map_path : data_maps/open-images-v6-mlperf/val_map.txt
mlperf_conf_path : /home/cmuser/CM/repos/local/cache/90c7069b92e34687/inference/mlperf.conf
multi_stream_expected_latency_ns : 0
Expand All @@ -26,7 +26,7 @@ tensor_path : build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet
test_mode : AccuracyOnly
use_deque_limit : True
use_graphs : True
user_conf_path : /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/6d1a55124ae14cd5803848d8020fb9c7.conf
user_conf_path : /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/e0c851fbdc114c64acabadda142757a6.conf
system_id : RTX4090x1
config_name : RTX4090x1_retinanet_MultiStream
workload_setting : WorkloadSetting(HarnessType.LWIS, AccuracyTarget.k_99, PowerSetting.MaxP)
Expand All @@ -40,26 +40,26 @@ power_limit : None
cpu_freq : None
&&&& RUNNING Default_Harness # ./build/bin/harness_default
[I] mlperf.conf path: /home/cmuser/CM/repos/local/cache/90c7069b92e34687/inference/mlperf.conf
[I] user.conf path: /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/6d1a55124ae14cd5803848d8020fb9c7.conf
[I] user.conf path: /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/e0c851fbdc114c64acabadda142757a6.conf
Creating QSL.
Finished Creating QSL.
Setting up SUT.
[I] [TRT] Loaded engine size: 73 MiB
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +6, GPU +10, now: CPU 124, GPU 888 (MiB)
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +2, GPU +10, now: CPU 126, GPU 898 (MiB)
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +6, GPU +10, now: CPU 124, GPU 890 (MiB)
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +2, GPU +10, now: CPU 126, GPU 900 (MiB)
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +68, now: CPU 0, GPU 68 (MiB)
[I] Device:0.GPU: [0] ./build/engines/RTX4090x1/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan has been successfully loaded.
[E] [TRT] 3: [runtime.cpp::~Runtime::401] Error Code 3: API Usage Error (Parameter check failed at: runtime/rt/runtime.cpp::~Runtime::401, condition: mEngineCounter.use_count() == 1 Destroying a runtime before destroying deserialized engines created by the runtime leads to undefined behavior.)
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 53, GPU 900 (MiB)
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 53, GPU 908 (MiB)
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 53, GPU 902 (MiB)
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 53, GPU 910 (MiB)
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +1528, now: CPU 0, GPU 1596 (MiB)
[I] Start creating CUDA graphs
[I] Capture 2 CUDA graphs
[I] Finish creating CUDA graphs
[I] Creating batcher thread: 0 EnableBatcherThreadPerDevice: false
Finished setting up SUT.
Starting warmup. Running for a minimum of 5 seconds.
Finished warmup. Ran for 5.14283s.
Finished warmup. Ran for 5.14223s.
Starting running actual test.

No warnings encountered during test.
Expand All @@ -72,34 +72,34 @@ Device Device:0.GPU processed:
PerSampleCudaMemcpy Calls: 0
BatchedCudaMemcpy Calls: 12392
&&&& PASSED Default_Harness # ./build/bin/harness_default
[2024-12-25 02:56:00,565 run_harness.py:166 INFO] Result: Accuracy run detected.
[2024-12-25 02:56:00,565 __init__.py:46 INFO] Running command: python3 /home/cmuser/CM/repos/local/cache/ba8d5f2a6bc546f9/repo/closed/NVIDIA/build/inference/vision/classification_and_detection/tools/accuracy-openimages.py --mlperf-accuracy-file /cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy/mlperf_log_accuracy.json --openimages-dir /home/cmuser/CM/repos/local/cache/a8c152aef5494496/preprocessed_data/open-images-v6-mlperf --output-file build/retinanet-results.json
[2025-01-01 12:17:03,821 run_harness.py:166 INFO] Result: Accuracy run detected.
[2025-01-01 12:17:03,822 __init__.py:46 INFO] Running command: python3 /home/cmuser/CM/repos/local/cache/ba8d5f2a6bc546f9/repo/closed/NVIDIA/build/inference/vision/classification_and_detection/tools/accuracy-openimages.py --mlperf-accuracy-file /cm-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy/mlperf_log_accuracy.json --openimages-dir /home/cmuser/CM/repos/local/cache/a8c152aef5494496/preprocessed_data/open-images-v6-mlperf --output-file build/retinanet-results.json
loading annotations into memory...
Done (t=0.42s)
Done (t=0.62s)
creating index...
index created!
Loading and preparing results...
DONE (t=16.55s)
DONE (t=18.62s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=128.46s).
DONE (t=143.89s).
Accumulating evaluation results...
DONE (t=30.09s).
DONE (t=34.42s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.373
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.522
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.403
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.404
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.023
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.125
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.412
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.124
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.413
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.419
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.598
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.599
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.628
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.082
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.344
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.677
mAP=37.317%
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.678
mAP=37.329%

======================== Result summaries: ========================

Loading

0 comments on commit 829a14a

Please sign in to comment.