Skip to content

Commit

Permalink
Results from GH action on NVIDIA_RTX4090x1
Browse files Browse the repository at this point in the history
  • Loading branch information
arjunsuresh committed Jan 31, 2025
1 parent 3de9ab5 commit c095160
Show file tree
Hide file tree
Showing 81 changed files with 39,964 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.*

## Host platform

* OS version: Linux-6.8.0-51-generic-x86_64-with-glibc2.29
* CPU version: x86_64
* Python version: 3.8.10 (default, Jan 17 2025, 14:40:23)
[GCC 9.4.0]
* MLC version: unknown

## CM Run Command

See [CM installation guide](https://docs.mlcommons.org/inference/install/).

```bash
pip install -U mlcflow

mlc rm cache -f

mlc pull repo mlcommons@mlperf-automations --checkout=02683cf5e8beb0cc5baaf27802daafc08fe42e67


```
*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf,
you should simply reload mlcommons@mlperf-automations without checkout and clean MLC cache as follows:*

```bash
mlc rm repo mlcommons@mlperf-automations
mlc pull repo mlcommons@mlperf-automations
mlc rm cache -f

```

## Results

Platform: RTX4090x1-nvidia-gpu-TensorRT-default_config

Model Precision: int8

### Accuracy Results

### Performance Results
`Samples per query`: `11960473.0`
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"starting_weights_filename": "https://zenodo.org/record/6617981/files/resnext50_32x4d_fpn.pth",
"retraining": "no",
"input_data_types": "int8",
"weight_data_types": "int8",
"weight_transformations": "quantization, affine fusion"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
[2025-01-31 13:36:22,880 main.py:229 INFO] Detected system ID: KnownSystem.ab508c0ea568
[2025-01-31 13:36:22,961 harness.py:249 INFO] The harness will load 2 plugins: ['build/plugins/NMSOptPlugin/libnmsoptplugin.so', 'build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so']
[2025-01-31 13:36:22,962 generate_conf_files.py:107 INFO] Generated measurements/ entries for ab508c0ea568_TRT/retinanet/MultiStream
[2025-01-31 13:36:22,962 __init__.py:46 INFO] Running command: ./build/bin/harness_default --plugins="build/plugins/NMSOptPlugin/libnmsoptplugin.so,build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so" --logfile_outdir="/mlc-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=64 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=2 --map_path="data_maps/open-images-v6-mlperf/val_map.txt" --mlperf_conf_path="/home/mlcuser/MLC/repos/local/cache/get-git-repo_02ea1bfc/inference/mlperf.conf" --tensor_path="build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear" --use_graphs=true --user_conf_path="/home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/16e46cedee994e58a8cd7ad1a4822c10.conf" --gpu_engines="./build/engines/ab508c0ea568/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan" --max_dlas=0 --scenario MultiStream --model retinanet --response_postprocess openimageeffnms
[2025-01-31 13:36:22,962 __init__.py:53 INFO] Overriding Environment
benchmark : Benchmark.Retinanet
buffer_manager_thread_count : 0
data_dir : /home/mlcuser/MLC/repos/local/cache/get-mlperf-inference-nvidia-scratch-space_fe95ede4/data
disable_beta1_smallk : True
gpu_batch_size : 2
gpu_copy_streams : 1
gpu_inference_streams : 1
input_dtype : int8
input_format : linear
log_dir : /home/mlcuser/MLC/repos/local/cache/get-git-repo_e7fa5107/repo/closed/NVIDIA/build/logs/2025.01.31-13.36.21
map_path : data_maps/open-images-v6-mlperf/val_map.txt
mlperf_conf_path : /home/mlcuser/MLC/repos/local/cache/get-git-repo_02ea1bfc/inference/mlperf.conf
multi_stream_expected_latency_ns : 0
multi_stream_samples_per_query : 8
multi_stream_target_latency_percentile : 99
precision : int8
preprocessed_data_dir : /home/mlcuser/MLC/repos/local/cache/get-mlperf-inference-nvidia-scratch-space_fe95ede4/preprocessed_data
scenario : Scenario.MultiStream
system : SystemConfiguration(host_cpu_conf=CPUConfiguration(layout={CPU(name='AMD Ryzen 9 7950X 16-Core Processor', architecture=<CPUArchitecture.x86_64: AliasedName(name='x86_64', aliases=(), patterns=())>, core_count=16, threads_per_core=2): 1}), host_mem_conf=MemoryConfiguration(host_memory_capacity=Memory(quantity=131.080068, byte_suffix=<ByteSuffix.GB: (1000, 3)>, _num_bytes=131080068000), comparison_tolerance=0.05), accelerator_conf=AcceleratorConfiguration(layout=defaultdict(<class 'int'>, {GPU(name='NVIDIA GeForce RTX 4090', accelerator_type=<AcceleratorType.Discrete: AliasedName(name='Discrete', aliases=(), patterns=())>, vram=Memory(quantity=23.98828125, byte_suffix=<ByteSuffix.GiB: (1024, 3)>, _num_bytes=25757220864), max_power_limit=450.0, pci_id='0x268410DE', compute_sm=89): 1})), numa_conf=None, system_id='ab508c0ea568')
tensor_path : build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear
test_mode : AccuracyOnly
use_deque_limit : True
use_graphs : True
user_conf_path : /home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/16e46cedee994e58a8cd7ad1a4822c10.conf
system_id : ab508c0ea568
config_name : ab508c0ea568_retinanet_MultiStream
workload_setting : WorkloadSetting(HarnessType.LWIS, AccuracyTarget.k_99, PowerSetting.MaxP)
optimization_level : plugin-enabled
num_profiles : 1
config_ver : lwis_k_99_MaxP
accuracy_level : 99%
inference_server : lwis
skip_file_checks : False
power_limit : None
cpu_freq : None
&&&& RUNNING Default_Harness # ./build/bin/harness_default
[I] mlperf.conf path: /home/mlcuser/MLC/repos/local/cache/get-git-repo_02ea1bfc/inference/mlperf.conf
[I] user.conf path: /home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/16e46cedee994e58a8cd7ad1a4822c10.conf
Creating QSL.
Finished Creating QSL.
Setting up SUT.
[I] [TRT] Loaded engine size: 73 MiB
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +6, GPU +10, now: CPU 124, GPU 888 (MiB)
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +2, GPU +10, now: CPU 126, GPU 898 (MiB)
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +68, now: CPU 0, GPU 68 (MiB)
[I] Device:0.GPU: [0] ./build/engines/ab508c0ea568/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan has been successfully loaded.
[E] [TRT] 3: [runtime.cpp::~Runtime::401] Error Code 3: API Usage Error (Parameter check failed at: runtime/rt/runtime.cpp::~Runtime::401, condition: mEngineCounter.use_count() == 1 Destroying a runtime before destroying deserialized engines created by the runtime leads to undefined behavior.)
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 53, GPU 900 (MiB)
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 53, GPU 908 (MiB)
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +1528, now: CPU 0, GPU 1596 (MiB)
[I] Start creating CUDA graphs
[I] Capture 2 CUDA graphs
[I] Finish creating CUDA graphs
[I] Creating batcher thread: 0 EnableBatcherThreadPerDevice: false
Finished setting up SUT.
Starting warmup. Running for a minimum of 5 seconds.
Finished warmup. Ran for 5.14309s.
Starting running actual test.

No warnings encountered during test.

No errors encountered during test.
Finished running actual test.
Device Device:0.GPU processed:
12392 batches of size 2
Memcpy Calls: 0
PerSampleCudaMemcpy Calls: 0
BatchedCudaMemcpy Calls: 12392
&&&& PASSED Default_Harness # ./build/bin/harness_default
[2025-01-31 13:37:50,565 run_harness.py:166 INFO] Result: Accuracy run detected.
[2025-01-31 13:37:50,565 __init__.py:46 INFO] Running command: python3 /home/mlcuser/MLC/repos/local/cache/get-git-repo_e7fa5107/repo/closed/NVIDIA/build/inference/vision/classification_and_detection/tools/accuracy-openimages.py --mlperf-accuracy-file /mlc-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy/mlperf_log_accuracy.json --openimages-dir /home/mlcuser/MLC/repos/local/cache/get-mlperf-inference-nvidia-scratch-space_fe95ede4/preprocessed_data/open-images-v6-mlperf --output-file build/retinanet-results.json
loading annotations into memory...
Done (t=0.45s)
creating index...
index created!
Loading and preparing results...
DONE (t=20.10s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=131.75s).
Accumulating evaluation results...
DONE (t=34.34s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.373
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.522
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.404
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.023
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.125
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.412
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.419
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.598
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.627
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.083
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.344
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.677
mAP=37.312%

======================== Result summaries: ========================

Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
{
"MLC_HOST_CPU_WRITE_PROTECT_SUPPORT": "yes",
"MLC_HOST_CPU_MICROCODE": "0xa601206",
"MLC_HOST_CPU_FPU_SUPPORT": "yes",
"MLC_HOST_CPU_FPU_EXCEPTION_SUPPORT": "yes",
"MLC_HOST_CPU_BUGS": "sysret_ss_attrs spectre_v1 spectre_v2 spec_store_bypass srso",
"MLC_HOST_CPU_TLB_SIZE": "3584 4K pages",
"MLC_HOST_CPU_CFLUSH_SIZE": "64",
"MLC_HOST_CPU_ARCHITECTURE": "x86_64",
"MLC_HOST_CPU_TOTAL_CORES": "32",
"MLC_HOST_CPU_ON_LINE_CPUS_LIST": "0-31",
"MLC_HOST_CPU_THREADS_PER_CORE": "2",
"MLC_HOST_CPU_PHYSICAL_CORES_PER_SOCKET": "16",
"MLC_HOST_CPU_SOCKETS": "1",
"MLC_HOST_CPU_NUMA_NODES": "1",
"MLC_HOST_CPU_VENDOR_ID": "AuthenticAMD",
"MLC_HOST_CPU_FAMILY": "25",
"MLC_HOST_CPU_MODEL_NAME": "AMD Ryzen 9 7950X 16-Core Processor",
"MLC_HOST_CPU_MAX_MHZ": "5881.0000",
"MLC_HOST_CPU_L1D_CACHE_SIZE": "512 KiB",
"MLC_HOST_CPU_L1I_CACHE_SIZE": "512 KiB",
"MLC_HOST_CPU_L2_CACHE_SIZE": "16 MiB",
"MLC_HOST_CPU_L3_CACHE_SIZE": "64 MiB",
"MLC_HOST_CPU_TOTAL_LOGICAL_CORES": "32",
"MLC_HOST_MEMORY_CAPACITY": "128G",
"MLC_HOST_DISK_CAPACITY": "6.8T"
}
Loading

0 comments on commit c095160

Please sign in to comment.