Skip to content

Commit

Permalink
Results on mlc-server
Browse files Browse the repository at this point in the history
  • Loading branch information
arjunsuresh committed Jan 15, 2025
1 parent b37d72e commit d43776c
Show file tree
Hide file tree
Showing 23 changed files with 16,603 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
{
"accelerator_frequency": "1980000 MHz",
"accelerator_host_interconnect": "N/A",
"accelerator_interconnect": "N/A",
"accelerator_interconnect_topology": "",
"accelerator_memory_capacity": "79.09661865234375 GB",
"accelerator_memory_configuration": "N/A",
"accelerator_model_name": "NVIDIA H100 80GB HBM3",
"accelerator_on-chip_memories": "",
"accelerators_per_node": 8,
"cooling": "air",
"division": "closed",
"framework": "pytorch v2.4.0",
"host_memory_capacity": "2.1T",
"host_memory_configuration": "undefined",
"host_network_card_count": "1",
"host_networking": "Gig Ethernet",
"host_networking_topology": "N/A",
"host_processor_caches": "L1d cache: 5.3 MiB (112 instances), L1i cache: 3.5 MiB (112 instances), L2 cache: 224 MiB (112 instances), L3 cache: 210 MiB (2 instances)",
"host_processor_core_count": "56",
"host_processor_frequency": "2001.0000",
"host_processor_interconnect": "",
"host_processor_model_name": "Intel(R) Xeon(R) Platinum 8480+",
"host_processors_per_node": "2",
"host_storage_capacity": "19T",
"host_storage_type": "SSD",
"hw_notes": "",
"number_of_nodes": "1",
"operating_system": "Ubuntu 22.04 (linux-5.15.0-113-generic-glibc2.35)",
"other_software_stack": "Python: 3.10.12, LLVM-15.0.6 , CUDA 12.4",
"status": "available",
"submitter": "MLCommons",
"sw_notes": "",
"system_name": "5234c0b61ae3",
"system_type": "datacenter",
"system_type_detail": "edge server"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.*

## Host platform

* OS version: Linux-5.15.0-113-generic-x86_64-with-glibc2.35
* CPU version: x86_64
* Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0]
* MLCommons CM version: 3.5.2

## CM Run Command

See [CM installation guide](https://docs.mlcommons.org/inference/install/).

```bash
pip install -U cmind

cm rm cache -f

cm pull repo mlcommons@mlperf-automations --checkout=86f785f2f02ddcbfb4ab4d997ea914e516cc94aa

cm run script \
--tags=run-mlperf,inference,_r5.0-dev,_full \
--model=rgat \
--implementation=reference \
--framework=pytorch \
--category=datacenter \
--scenario=Offline \
--execution_mode=valid \
--device=cuda \
--quiet \
--threads=2 \
--batch_size=2048 \
--division=closed
```
*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts),
you should simply reload mlcommons@mlperf-automations without checkout and clean CM cache as follows:*

```bash
cm rm repo mlcommons@mlperf-automations
cm pull repo mlcommons@mlperf-automations
cm rm cache -f

```

## Results

Platform: mlc-server-reference-gpu-pytorch_v2.4.0-cu124

Model Precision: fp32

### Accuracy Results
`acc`: `72.813`, Required accuracy for closed division `>= 0.72131`

### Performance Results
`Samples per second`: `316.253`
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
INFO:main:Namespace(dataset='igbh-dgl', dataset_path='/cm-mount/data/common/anandhu/igbh', in_memory=False, layout='COO', profile='rgat-dgl-full', scenario='Offline', max_batchsize=2048, threads=2, accuracy=True, find_peak_performance=False, backend='dgl', model_name='rgat', output='/root/CM/repos/local/cache/e1d5c35e70ca49ae/valid_results/5234c0b61ae3-reference-gpu-pytorch-v2.4.0-cu124/rgat/offline/accuracy', qps=None, model_path='/root/CM/repos/local/cache/26842ad3f07d429f/RGAT/RGAT.pt', dtype='fp32', device='gpu', user_conf='/root/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/780b56120abd46ca9c5312477a2cb8f1.conf', audit_conf='audit.config', time=None, count=None, debug=False, performance_sample_count=5000, max_latency=None, samples_per_query=8)
/root/CM/repos/local/cache/6793a301c9ee436d/inference/graph/R-GAT/dgl_utilities/feature_fetching.py:231: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:206.)
return edge, torch.from_numpy(
/root/CM/repos/local/cache/6793a301c9ee436d/inference/graph/R-GAT/dgl_utilities/feature_fetching.py:312: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
torch.load(
/root/CM/repos/local/cache/6793a301c9ee436d/inference/graph/R-GAT/dgl_utilities/feature_fetching.py:318: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
torch.load(
/root/CM/repos/local/cache/6793a301c9ee436d/inference/graph/R-GAT/backend_dgl.py:70: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
ckpt = torch.load(ckpt_path, map_location=self.device)
INFO:main:starting TestScenario.Offline
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
graph TD
app-mlperf-inference,d775cac873ee4231_(_reference,_rgat,_pytorch,_cuda,_valid,_r5.0-dev_default,_offline_) --> detect,os
app-mlperf-inference,d775cac873ee4231_(_reference,_rgat,_pytorch,_cuda,_valid,_r5.0-dev_default,_offline_) --> get,sys-utils-cm
app-mlperf-inference,d775cac873ee4231_(_reference,_rgat,_pytorch,_cuda,_valid,_r5.0-dev_default,_offline_) --> get,python
get-mlperf-inference-src,4b57186581024797 --> detect,os
get-mlperf-inference-src,4b57186581024797 --> get,python3
get-mlperf-inference-src,4b57186581024797 --> get,git,repo,_branch.master,_repo.https://github.com/mlcommons/inference
app-mlperf-inference,d775cac873ee4231_(_reference,_rgat,_pytorch,_cuda,_valid,_r5.0-dev_default,_offline_) --> get,mlcommons,inference,src
get-mlperf-inference-src,4b57186581024797 --> detect,os
get-mlperf-inference-src,4b57186581024797 --> get,python3
get-mlperf-inference-src,4b57186581024797 --> get,git,repo,_branch.master,_repo.https://github.com/mlcommons/inference
get-mlperf-inference-utils,e341e5f86d8342e5 --> get,mlperf,inference,src
app-mlperf-inference,d775cac873ee4231_(_reference,_rgat,_pytorch,_cuda,_valid,_r5.0-dev_default,_offline_) --> get,mlperf,inference,utils
get-cuda-devices,7a3ede4d3558427a_(_with-pycuda_) --> get,cuda,_toolkit
get-cuda-devices,7a3ede4d3558427a_(_with-pycuda_) --> get,python3
get-generic-python-lib,94b62a682bc44791_(_package.pycuda_) --> get,python3
get-cuda-devices,7a3ede4d3558427a_(_with-pycuda_) --> get,generic-python-lib,_package.pycuda
get-generic-python-lib,94b62a682bc44791_(_package.numpy_) --> get,python3
get-cuda-devices,7a3ede4d3558427a_(_with-pycuda_) --> get,generic-python-lib,_package.numpy
app-mlperf-inference,d775cac873ee4231_(_reference,_rgat,_pytorch,_cuda,_valid,_r5.0-dev_default,_offline_) --> get,cuda-devices,_with-pycuda
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> detect,os
detect-cpu,586c8a43320142f7 --> detect,os
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> detect,cpu
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,sys-utils-cm
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,python
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,cuda,_cudnn
get-generic-python-lib,94b62a682bc44791_(_torch_cuda_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_torch_cuda
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,ml-model,rgat
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,dataset,mlperf,inference,igbh,_full
generate-mlperf-inference-user-conf,3af4475745964b93 --> detect,os
detect-cpu,586c8a43320142f7 --> detect,os
generate-mlperf-inference-user-conf,3af4475745964b93 --> detect,cpu
generate-mlperf-inference-user-conf,3af4475745964b93 --> get,python
get-mlperf-inference-src,4b57186581024797 --> detect,os
get-mlperf-inference-src,4b57186581024797 --> get,python3
get-mlperf-inference-src,4b57186581024797 --> get,git,repo,_branch.master,_repo.https://github.com/mlcommons/inference
generate-mlperf-inference-user-conf,3af4475745964b93 --> get,mlcommons,inference,src
get-mlperf-inference-sut-configs,c2fbf72009e2445b --> get,cache,dir,_name.mlperf-inference-sut-configs
generate-mlperf-inference-user-conf,3af4475745964b93 --> get,sut,configs
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> generate,user-conf,mlperf,inference
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,loadgen
get-mlperf-inference-src,4b57186581024797 --> detect,os
get-mlperf-inference-src,4b57186581024797 --> get,python3
get-mlperf-inference-src,4b57186581024797 --> get,git,repo,_branch.master,_repo.https://github.com/mlcommons/inference
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,mlcommons,inference,src
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,mlcommons,inference,src
get-generic-python-lib,94b62a682bc44791_(_package.psutil_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.psutil
get-generic-python-lib,94b62a682bc44791_(_package.colorama_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.colorama
get-generic-python-lib,94b62a682bc44791_(_package.tqdm_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.tqdm
get-generic-python-lib,94b62a682bc44791_(_package.requests_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.requests
get-generic-python-lib,94b62a682bc44791_(_package.torchdata_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.torchdata
get-generic-python-lib,94b62a682bc44791_(_package.pybind11_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.pybind11
get-generic-python-lib,94b62a682bc44791_(_package.PyYAML_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.PyYAML
get-generic-python-lib,94b62a682bc44791_(_package.numpy_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.numpy
get-generic-python-lib,94b62a682bc44791_(_package.pydantic_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.pydantic
get-generic-python-lib,94b62a682bc44791_(_package.igb,_url.git+https://github.com/IllinoisGraphBenchmark/IGB-Datasets.git_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.igb,_url.git+https://github.com/IllinoisGraphBenchmark/IGB-Datasets.git
get-generic-python-lib,94b62a682bc44791_(_package.torch-geometric,_find_links_url.https://data.pyg.org/whl/torch-2.4.0.html_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.torch-geometric,_find_links_url.https://data.pyg.org/whl/torch-2.4.0.html
get-generic-python-lib,94b62a682bc44791_(_package.torch-scatter,_find_links_url.https://data.pyg.org/whl/torch-2.4.0.html_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.torch-scatter,_find_links_url.https://data.pyg.org/whl/torch-2.4.0.html
get-generic-python-lib,94b62a682bc44791_(_package.torch-sparse,_find_links_url.https://data.pyg.org/whl/torch-2.4.0.html_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.torch-sparse,_find_links_url.https://data.pyg.org/whl/torch-2.4.0.html
get-generic-python-lib,94b62a682bc44791_(_package.dgl,_find_links_url.https://data.dgl.ai/wheels/torch-2.4/cu121/repo.html_) --> get,python3
app-mlperf-inference-mlcommons-python,ff149e9781fc4b65_(_batch_size.2048,_pytorch,_cuda,_offline,_rgat,_fp32_) --> get,generic-python-lib,_package.dgl,_find_links_url.https://data.dgl.ai/wheels/torch-2.4/cu121/repo.html
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit d43776c

Please sign in to comment.