Skip to content

mlr3proba 0.4.0

Compare
Choose a tag to compare
@RaphaelS1 RaphaelS1 released this 18 Apr 07:47
· 975 commits to main since this release
  • Deprecated measures from 0.2.0 have now been deleted.
  • IPCW measures such as surv.graf, surv.schmid, and surv.intlogloss now allow training data to be passed to the score function with task and train_set to allow the censoring distribution to be estimated on the training data. This is automatically applied for resample and benchmark results.
  • IPCW measures such as surv.graf, surv.schmid, and surv.intlogloss now include a parameter proper to determine what weighting scheme should be applied by the estimated censoring distribution, The current method (Graf, 1999) proper = FALSE, weights observations either by their event time or 'current' time depending if they're dead or not, the new method proper = TRUE weights observations by event time. The proper = TRUE method is strictly proper when censoring and survival times are independent and G is estimated on large enough data. The proper = FALSE method is never proper. The default is currently proper = FALSE to enable backward compatibility, this will be changed to proper = TRUE in v0.6.0.
  • The rm_cens parameter in surv.logloss has been deprecated in favour of IPCW. rm_cens will be removed in v0.6.0. If rm_cens or IPCW are TRUE then censored observations are removed and the score is weighted by an estimate of the censoring distribution at individual event times. Otherwise if rm_cens and IPCW are FALSE then no deletion or weighting takes place. The IPCW = TRUE method is strictly proper when censoring and survival times are independent and G is estimated on large enough data. The ipcw = FALSE method is never proper.
  • Add surv.dcalib for the D-Calibration measure from Haider et al. (2020).