Official Pytorch implementation of "Distilling Global and Local Logits with Densely Connected Relations", ICCV 2021.
| paper | supplementary material |
This repository contains source code of CIFAR-100 experimental setup (a). We provide a pre-trained teacher weight in "teacher" directory, median of 3 runs for starting distillation without pre-training the teacher network. Training logs of distilled student are in "log" directory.
Setup (a) : Teacher (ResNet-110), Student (ResNet-20).
- Python3
- PyTorch (> 1.0)
- torchvision (> 0.2)
- NumPy
python3 ./train.py --model resnet --depth 110
python3 ./distill.py --teacher resnet --student resnet --depth 110 --sdepth 20 --alpha 0.7 --beta 500. --div 2
@inproceedings{kim2021distilling,
title={Distilling Global and Local Logits With Densely Connected Relations},
author={Kim, Youmin and Park, Jinbae and Jang, YounHo and Ali, Muhammad and Oh, Tae-Hyun and Bae, Sung-Ho},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={6290--6300},
year={2021}
}