Skip to content

Stock Market Prediction Using Neural Network Models (Backpropagation, RNN, RBF) Keras with Tensorflow backend

Notifications You must be signed in to change notification settings

mohabmes/StockNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

StockNN

Stock Prices Prediction Using Neural Network Models (Backpropagation, RNN LSTM, RBF) implemented in keras with Tensorflow backend to predict the daily closing price.

Class Version Usage


snn = stocknn().RNN()

snn = snn.preprocess('AAPL.csv', test_size=0.2)
snn = snn.train(batch_size=32, epochs=50)

or

snn = stocknn().BKP().preprocess('AAPL.csv', test_size=0.5).train(batch_size=16, epochs=25)
model = snn.save_model('AAPL')
mape = snn.test(model)[0]
pred = snn.predict(100)[1]

StockNN Subclasses

[Subclasses]:
    stocknn().RNN()            Recurrent Neural Networks.
    stocknn().RBF()            Radial Basis Function Networks.
    stocknn().BKP()            Back-propagation Networks.

Dataset

All datasets are obtained using pystocklib.

Requirement

  • Keras
  • Pandas
  • numpy
  • scikit-learn
  • matplotlib

Credit

  • PetraVidnerova

About

Stock Market Prediction Using Neural Network Models (Backpropagation, RNN, RBF) Keras with Tensorflow backend

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages