Skip to content

Commit 4208cb8

Browse files
committed
week 9
1 parent d268e8e commit 4208cb8

File tree

3 files changed

+31
-26
lines changed

3 files changed

+31
-26
lines changed

LTR-0020/main.tex

Lines changed: 5 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -238,31 +238,28 @@ \section*{Practice Problems}
238238
$$A=\begin{bmatrix}\answer{0}&\answer{-1}\\\answer{3}&\answer{-1}\\\answer{2}&\answer{3}\end{bmatrix}$$
239239
\end{problem}
240240

241-
\emph{Problems \ref{prob:standardmatrix1}-\ref{prob:standardmatrix4}}.
242-
243-
Find the standard matrix $A$ of each linear transformation $T:\RR^2\rightarrow\RR^2$ described below.
244-
245241
\begin{problem}\label{prob:standardmatrix1}
242+
Find the standard matrix $A$ of the linear transformation $T:\RR^2\rightarrow\RR^2$ if
246243
$T$ doubles the $x$ component of every vector and triples the $y$ component.
247244
$$A=\begin{bmatrix}\answer{2}&\answer{0}\\\answer{0}&\answer{3}\end{bmatrix}$$
248245
\end{problem}
249246

250-
\begin{problem}\label{prob:standardmatrix2}
247+
\begin{problem}\label{prob:standardmatrix2} Find the standard matrix $A$ of the linear transformation $T:\RR^2\rightarrow\RR^2$ if
251248
$T$ reverses the direction of each vector.
252249
$$A=\begin{bmatrix}\answer{-1}&\answer{0}\\\answer{0}&\answer{-1}\end{bmatrix}$$
253250
\end{problem}
254251

255-
\begin{problem}\label{prob:standardmatrix5}
252+
\begin{problem}\label{prob:standardmatrix5} Find the standard matrix $A$ of the linear transformation $T:\RR^2\rightarrow\RR^2$ if
256253
$T$ doubles the length of each vector.
257254
$$A=\begin{bmatrix}\answer{2}&\answer{0}\\\answer{0}&\answer{2}\end{bmatrix}$$
258255
\end{problem}
259256

260-
\begin{problem}\label{prob:standardmatrix3}
257+
\begin{problem}\label{prob:standardmatrix3} Find the standard matrix $A$ of the linear transformation $T:\RR^2\rightarrow\RR^2$ if
261258
$T$ projects each vector onto the $x$-axis. (e.g. $T\left(\begin{bmatrix}4\\5\end{bmatrix}\right)=\begin{bmatrix}4\\0\end{bmatrix}$)
262259
$$A=\begin{bmatrix}\answer{1}&\answer{0}\\\answer{0}&\answer{0}\end{bmatrix}$$
263260
\end{problem}
264261

265-
\begin{problem}\label{prob:standardmatrix4}
262+
\begin{problem}\label{prob:standardmatrix4} Find the standard matrix $A$ of the linear transformation $T:\RR^2\rightarrow\RR^2$ if
266263
$T$ projects each vector onto the $y$-axis. (e.g. $T\left(\begin{bmatrix}4\\5\end{bmatrix}\right)=\begin{bmatrix}0\\5\end{bmatrix}$)
267264
$$A=\begin{bmatrix}\answer{0}&\answer{0}\\\answer{0}&\answer{1}\end{bmatrix}$$
268265
\end{problem}

LTR-0050/main.tex

Lines changed: 10 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -283,12 +283,8 @@ \subsection*{Rank-Nullity Theorem for Linear Transformations}
283283
\end{proof}
284284

285285
\section*{Practice Problems}
286-
\emph{Problems \ref{prob:imagerankoflintrans1}-\ref{prob:imagerankoflintrans2}}
287-
288-
Describe the image and find the rank for each linear transformation $T:\RR^n\rightarrow \RR^m$ with standard matrix $A$ given below.
289-
290-
\begin{problem}\label{prob:imagerankoflintrans1}
291-
$T:\RR^5\rightarrow \RR^2$, $A=\begin{bmatrix}3&2&4&7&1\\-1&-9&7&6&8\end{bmatrix}$.
286+
\begin{problem}\label{prob:imagerankoflintrans1} Describe the image and find the rank of the linear transformation
287+
$T:\RR^5\rightarrow \RR^2$ induced by $A=\begin{bmatrix}3&2&4&7&1\\-1&-9&7&6&8\end{bmatrix}$.
292288

293289
\begin{multipleChoice}
294290
\choice[correct]{$\mbox{im}(T)=\RR^2$}
@@ -301,8 +297,8 @@ \section*{Practice Problems}
301297
$\mbox{rank}(T)=\answer{2}$
302298
\end{problem}
303299

304-
\begin{problem}\label{prob:imagerankoflintrans2}
305-
$T:\RR^2\rightarrow\RR^3$, $A=\begin{bmatrix}1&1\\1&1\\1&1\end{bmatrix}$
300+
\begin{problem}\label{prob:imagerankoflintrans2} Describe the image and find the rank of the linear transformation
301+
$T:\RR^2\rightarrow\RR^3$ induced by $A=\begin{bmatrix}1&1\\1&1\\1&1\end{bmatrix}$
306302

307303
\begin{multipleChoice}
308304
\choice{$\mbox{im}(T)=\RR^3$}
@@ -320,12 +316,8 @@ \section*{Practice Problems}
320316
\begin{problem}\label{prob:sametrans} Suppose linear transformations $T:\RR^2\rightarrow \RR^2$ and $S:\RR^2\rightarrow \RR^2$ are such that $\mbox{im}(T)=\mbox{im}(S)=\mbox{span}\left(\begin{bmatrix}1\\-3\end{bmatrix}\right)$. Does this mean that $T$ and $S$ are the same transformation? Justify your claim.
321317
\end{problem}
322318

323-
\emph{Problems \ref{prob:kerandnullityT1}-\ref{prob:kerandnullityT3}}
324-
325-
Describe the kernel and find the nullity for each linear transformation $T:\RR^n\rightarrow \RR^m$ with standard matrix $A$ given below.
326-
327-
\begin{problem}\label{prob:kerandnullityT1}
328-
$T:\RR^3\rightarrow \RR^2$, $A=\begin{bmatrix}2&1&0\\-1&1&-3\end{bmatrix}$.
319+
\begin{problem}\label{prob:kerandnullityT1} Describe the kernel and find the nullity of the linear transformation
320+
$T:\RR^3\rightarrow \RR^2$ induced by $A=\begin{bmatrix}2&1&0\\-1&1&-3\end{bmatrix}$.
329321

330322
\begin{multipleChoice}
331323
\choice{$\mbox{ker}(T)=\RR^3$}
@@ -338,8 +330,8 @@ \section*{Practice Problems}
338330
$\mbox{nullity}(T)=\answer{1}$
339331
\end{problem}
340332

341-
\begin{problem}\label{prob:kerandnullityT2}
342-
$T:\RR^2\rightarrow \RR^2$, $A=\begin{bmatrix}2&-1\\3&0\end{bmatrix}$.
333+
\begin{problem}\label{prob:kerandnullityT2} Describe the kernel and find the nullity of the linear transformation
334+
$T:\RR^2\rightarrow \RR^2$ induced by $A=\begin{bmatrix}2&-1\\3&0\end{bmatrix}$.
343335

344336
\begin{multipleChoice}
345337
\choice{$\mbox{ker}(T)=\RR^2$}
@@ -350,8 +342,8 @@ \section*{Practice Problems}
350342
$\mbox{nullity}(T)=\answer{0}$
351343
\end{problem}
352344

353-
\begin{problem}\label{prob:kerandnullityT3}
354-
$T:\RR^3\rightarrow \RR^5$, $A=\begin{bmatrix}1&2&-1\\1&2&-1\\1&2&-1\\1&2&-1\\1&2&-1\end{bmatrix}$
345+
\begin{problem}\label{prob:kerandnullityT3} Describe the kernel and find the nullity of the linear transformation
346+
$T:\RR^3\rightarrow \RR^5$ induced by $A=\begin{bmatrix}1&2&-1\\1&2&-1\\1&2&-1\\1&2&-1\\1&2&-1\end{bmatrix}$
355347

356348
\begin{multipleChoice}
357349
\choice[correct]{$\mbox{ker}(T)$ is a plane in $\RR^3$}

week9.tex

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
\documentclass{xourse}
2+
3+
\input{preamble.tex}
4+
5+
\title{Week 9}
6+
7+
\begin{document}
8+
\begin{abstract}
9+
\end{abstract}
10+
\maketitle
11+
12+
%\part{Week 9 assignments}
13+
\activity{LTR-0020/main}
14+
\activity{LTR-0050/main}
15+
\activity{LTR-0030/main}
16+
\end{document}

0 commit comments

Comments
 (0)