@@ -283,12 +283,8 @@ \subsection*{Rank-Nullity Theorem for Linear Transformations}
283283\end {proof }
284284
285285\section* {Practice Problems }
286- \emph {Problems \ref {prob:imagerankoflintrans1 }-\ref {prob:imagerankoflintrans2 } }
287-
288- Describe the image and find the rank for each linear transformation $ T:\RR ^n\rightarrow \RR ^m$ with standard matrix $ A$ given below.
289-
290- \begin {problem }\label {prob:imagerankoflintrans1 }
291- $ T:\RR ^5 \rightarrow \RR ^2 $ , $ A=\begin {bmatrix}3 &2 &4 &7 &1 \\ -1 &-9 &7 &6 &8 \end {bmatrix}$ .
286+ \begin {problem }\label {prob:imagerankoflintrans1 } Describe the image and find the rank of the linear transformation
287+ $ T:\RR ^5 \rightarrow \RR ^2 $ induced by $ A=\begin {bmatrix}3 &2 &4 &7 &1 \\ -1 &-9 &7 &6 &8 \end {bmatrix}$ .
292288
293289 \begin {multipleChoice }
294290 \choice [correct]{$ \mbox {im}(T)=\RR ^2 $ }
@@ -301,8 +297,8 @@ \section*{Practice Problems}
301297 $ \mbox {rank}(T)=\answer {2}$
302298 \end {problem }
303299
304- \begin {problem }\label {prob:imagerankoflintrans2 }
305- $ T:\RR ^2 \rightarrow \RR ^3 $ , $ A=\begin {bmatrix}1 &1 \\ 1 &1 \\ 1 &1 \end {bmatrix}$
300+ \begin {problem }\label {prob:imagerankoflintrans2 } Describe the image and find the rank of the linear transformation
301+ $ T:\RR ^2 \rightarrow \RR ^3 $ induced by $ A=\begin {bmatrix}1 &1 \\ 1 &1 \\ 1 &1 \end {bmatrix}$
306302
307303 \begin {multipleChoice }
308304 \choice {$ \mbox {im}(T)=\RR ^3 $ }
@@ -320,12 +316,8 @@ \section*{Practice Problems}
320316\begin {problem }\label {prob:sametrans } Suppose linear transformations $ T:\RR ^2 \rightarrow \RR ^2 $ and $ S:\RR ^2 \rightarrow \RR ^2 $ are such that $ \mbox {im}(T)=\mbox {im}(S)=\mbox {span}\left (\begin {bmatrix}1 \\ -3 \end {bmatrix}\right )$ . Does this mean that $ T$ and $ S$ are the same transformation? Justify your claim.
321317\end {problem }
322318
323- \emph {Problems \ref {prob:kerandnullityT1 }-\ref {prob:kerandnullityT3 } }
324-
325- Describe the kernel and find the nullity for each linear transformation $ T:\RR ^n\rightarrow \RR ^m$ with standard matrix $ A$ given below.
326-
327- \begin {problem }\label {prob:kerandnullityT1 }
328- $ T:\RR ^3 \rightarrow \RR ^2 $ , $ A=\begin {bmatrix}2 &1 &0 \\ -1 &1 &-3 \end {bmatrix}$ .
319+ \begin {problem }\label {prob:kerandnullityT1 } Describe the kernel and find the nullity of the linear transformation
320+ $ T:\RR ^3 \rightarrow \RR ^2 $ induced by $ A=\begin {bmatrix}2 &1 &0 \\ -1 &1 &-3 \end {bmatrix}$ .
329321
330322\begin {multipleChoice }
331323 \choice {$ \mbox {ker}(T)=\RR ^3 $ }
@@ -338,8 +330,8 @@ \section*{Practice Problems}
338330$ \mbox {nullity}(T)=\answer {1}$
339331\end {problem }
340332
341- \begin {problem }\label {prob:kerandnullityT2 }
342- $ T:\RR ^2 \rightarrow \RR ^2 $ , $ A=\begin {bmatrix}2 &-1 \\ 3 &0 \end {bmatrix}$ .
333+ \begin {problem }\label {prob:kerandnullityT2 } Describe the kernel and find the nullity of the linear transformation
334+ $ T:\RR ^2 \rightarrow \RR ^2 $ induced by $ A=\begin {bmatrix}2 &-1 \\ 3 &0 \end {bmatrix}$ .
343335
344336\begin {multipleChoice }
345337 \choice {$ \mbox {ker}(T)=\RR ^2 $ }
@@ -350,8 +342,8 @@ \section*{Practice Problems}
350342$ \mbox {nullity}(T)=\answer {0}$
351343\end {problem }
352344
353- \begin {problem }\label {prob:kerandnullityT3 }
354- $ T:\RR ^3 \rightarrow \RR ^5 $ , $ A=\begin {bmatrix}1 &2 &-1 \\ 1 &2 &-1 \\ 1 &2 &-1 \\ 1 &2 &-1 \\ 1 &2 &-1 \end {bmatrix}$
345+ \begin {problem }\label {prob:kerandnullityT3 } Describe the kernel and find the nullity of the linear transformation
346+ $ T:\RR ^3 \rightarrow \RR ^5 $ induced by $ A=\begin {bmatrix}1 &2 &-1 \\ 1 &2 &-1 \\ 1 &2 &-1 \\ 1 &2 &-1 \\ 1 &2 &-1 \end {bmatrix}$
355347
356348\begin {multipleChoice }
357349 \choice [correct]{$ \mbox {ker}(T)$ is a plane in $ \RR ^3 $ }
0 commit comments