You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
List the coordinates for each $P_i$ with respect to the given coordinate system. Your coordinates should be of the form $(A\text{-coordinate}, B\text{-coordinate})$.
28
28
$$P_1=\left(\answer{1},\answer{1}\right)$$
29
29
$$P_2=\left(\answer{-2},\answer{0}\right)$$
30
-
$$P_1=\left(\answer{0},\answer{-1}\right)$$
31
-
$$P_1=\left(\answer{-2},\answer{3}\right)$$
32
-
$$P_1=\left(\answer{3},\answer{-2}\right)$$
30
+
$$P_3=\left(\answer{0},\answer{-1}\right)$$
31
+
$$P_4=\left(\answer{-2},\answer{3}\right)$$
32
+
$$P_5=\left(\answer{3},\answer{-2}\right)$$
33
33
\end{question}
34
34
35
35
\begin{question}
36
36
Move point $B$ to coincide with $P_3$
37
37
List the coordinates for each $P_i$ with respect to the new coordinate system. Your coordinates should be of the form $(A\text{-coordinate}, B\text{-coordinate})$.
38
38
$$P_1=\left(\answer{1},\answer{-1}\right)$$
39
39
$$P_2=\left(\answer{-2},\answer{0}\right)$$
40
-
$$P_1=\left(\answer{0},\answer{1}\right)$$
41
-
$$P_1=\left(\answer{-2},\answer{-3}\right)$$
42
-
$$P_1=\left(\answer{3},\answer{2}\right)$$
40
+
$$P_3=\left(\answer{0},\answer{1}\right)$$
41
+
$$P_4=\left(\answer{-2},\answer{-3}\right)$$
42
+
$$P_5=\left(\answer{3},\answer{2}\right)$$
43
43
How do these coordinates compare to the coordinates in the previous question? Explain why this is happening. (Hint: you can use the RESET button to return to the original coordinate system to compare.)
44
44
\end{question}
45
45
@@ -48,9 +48,9 @@ \section*{Explorations}
48
48
List the coordinates for each $P_i$ with respect to the new coordinate system. Your coordinates should be of the form $(A\text{-coordinate}, B\text{-coordinate})$.
49
49
$$P_1=\left(\answer{1},\answer{0}\right)$$
50
50
$$P_2=\left(\answer{-2},\answer{2}\right)$$
51
-
$$P_1=\left(\answer{0},\answer{-1}\right)$$
52
-
$$P_1=\left(\answer{-2},\answer{5}\right)$$
53
-
$$P_1=\left(\answer{3},\answer{-5}\right)$$
51
+
$$P_3=\left(\answer{0},\answer{-1}\right)$$
52
+
$$P_4=\left(\answer{-2},\answer{5}\right)$$
53
+
$$P_5=\left(\answer{3},\answer{-5}\right)$$
54
54
How do these coordinates compare to the coordinates in the original coordinate system? Explain why this is happening. (Hint: you can use the reset button to return to the original coordinate system to compare.)
55
55
\end{question}
56
56
@@ -65,6 +65,37 @@ \section*{Explorations}
65
65
Discuss the relationship between your answers to the first question and your answers here.
66
66
\end{question}
67
67
68
+
\begin{question}
69
+
Move point $B$ to coincide with $P_2$. What do you observe? Do vectors $\overrightarrow{OA}$ and $\overrightarrow{OB}$ determine a good coordinate system for the plane? Can we express every point in the plane as a linear combination of $\overrightarrow{OA}$ and $\overrightarrow{OB}$? Can we express \textit{some} points in the plane as linear combinations of $\overrightarrow{OA}$ and $\overrightarrow{OB}$?
We will use the same set-up as in the previous exploration but introduce an additional vector $\overrightarrow{OC}$.
76
+
77
+
% https://www.geogebra.org/classic/b3k96x2w
78
+
79
+
\begin{center}
80
+
\geogebra{b3k96x2w}{800}{600}
81
+
\end{center}
82
+
83
+
\begin{question}
84
+
Suppose we want to express $P_1$ using a coordinate system determined by three vectors $\overrightarrow{OA}$, $\overrightarrow{OB}$, and $\overrightarrow{OC}$. If the coordinates are to be of the form $(A\text{-coordinate}, B\text{-coordinate}, C\text{-coordinate})$, how many ways do you think there would be to express $P_1$? Fill in the missing coordinates for $P_1$ below.
85
+
$$P_1=\left(\answer{1},\answer{1},0\right)$$
86
+
$$P_1=\left(0,\answer{2},\answer{0.5}\right)$$
87
+
$$P_1=\left(\answer{2}, 0, \answer{-0.5}\right)$$
88
+
$$P_1=\left(\answer{3},-1,-1\right)$$
89
+
\end{question}
90
+
91
+
\begin{question}
92
+
Based on your work above, express $\overrightarrow{OP_1}$ as a linear combination of $\overrightarrow{OA}$, $\overrightarrow{OB}$, and $\overrightarrow{OC}$. How many ways do you think there are to do this?
93
+
\end{question}
94
+
95
+
\begin{question}
96
+
Compare and contrast the coordinate systems in this exploration and Exploration \ref{exp:coordSystemLinCombs1}.
0 commit comments