Skip to content

Commit 46ae0db

Browse files
committed
Update main.tex
1 parent 94f8884 commit 46ae0db

File tree

1 file changed

+41
-10
lines changed

1 file changed

+41
-10
lines changed

SAND-0010/main.tex

Lines changed: 41 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ \section*{Linear Combinations and Alternative Coordinate Systems}
1717

1818
\section*{Explorations}
1919

20-
\begin{exploration}\label{exp:coordSystemLinCombs}
20+
\begin{exploration}\label{exp:coordSystemLinCombs1}
2121
Use the interactive below to answer the questions
2222
% https://www.geogebra.org/classic/qw5dpmqq
2323
\begin{center}
@@ -27,19 +27,19 @@ \section*{Explorations}
2727
List the coordinates for each $P_i$ with respect to the given coordinate system. Your coordinates should be of the form $(A\text{-coordinate}, B\text{-coordinate})$.
2828
$$P_1=\left(\answer{1},\answer{1}\right)$$
2929
$$P_2=\left(\answer{-2},\answer{0}\right)$$
30-
$$P_1=\left(\answer{0},\answer{-1}\right)$$
31-
$$P_1=\left(\answer{-2},\answer{3}\right)$$
32-
$$P_1=\left(\answer{3},\answer{-2}\right)$$
30+
$$P_3=\left(\answer{0},\answer{-1}\right)$$
31+
$$P_4=\left(\answer{-2},\answer{3}\right)$$
32+
$$P_5=\left(\answer{3},\answer{-2}\right)$$
3333
\end{question}
3434

3535
\begin{question}
3636
Move point $B$ to coincide with $P_3$
3737
List the coordinates for each $P_i$ with respect to the new coordinate system. Your coordinates should be of the form $(A\text{-coordinate}, B\text{-coordinate})$.
3838
$$P_1=\left(\answer{1},\answer{-1}\right)$$
3939
$$P_2=\left(\answer{-2},\answer{0}\right)$$
40-
$$P_1=\left(\answer{0},\answer{1}\right)$$
41-
$$P_1=\left(\answer{-2},\answer{-3}\right)$$
42-
$$P_1=\left(\answer{3},\answer{2}\right)$$
40+
$$P_3=\left(\answer{0},\answer{1}\right)$$
41+
$$P_4=\left(\answer{-2},\answer{-3}\right)$$
42+
$$P_5=\left(\answer{3},\answer{2}\right)$$
4343
How do these coordinates compare to the coordinates in the previous question? Explain why this is happening. (Hint: you can use the RESET button to return to the original coordinate system to compare.)
4444
\end{question}
4545

@@ -48,9 +48,9 @@ \section*{Explorations}
4848
List the coordinates for each $P_i$ with respect to the new coordinate system. Your coordinates should be of the form $(A\text{-coordinate}, B\text{-coordinate})$.
4949
$$P_1=\left(\answer{1},\answer{0}\right)$$
5050
$$P_2=\left(\answer{-2},\answer{2}\right)$$
51-
$$P_1=\left(\answer{0},\answer{-1}\right)$$
52-
$$P_1=\left(\answer{-2},\answer{5}\right)$$
53-
$$P_1=\left(\answer{3},\answer{-5}\right)$$
51+
$$P_3=\left(\answer{0},\answer{-1}\right)$$
52+
$$P_4=\left(\answer{-2},\answer{5}\right)$$
53+
$$P_5=\left(\answer{3},\answer{-5}\right)$$
5454
How do these coordinates compare to the coordinates in the original coordinate system? Explain why this is happening. (Hint: you can use the reset button to return to the original coordinate system to compare.)
5555
\end{question}
5656

@@ -65,6 +65,37 @@ \section*{Explorations}
6565
Discuss the relationship between your answers to the first question and your answers here.
6666
\end{question}
6767

68+
\begin{question}
69+
Move point $B$ to coincide with $P_2$. What do you observe? Do vectors $\overrightarrow{OA}$ and $\overrightarrow{OB}$ determine a good coordinate system for the plane? Can we express every point in the plane as a linear combination of $\overrightarrow{OA}$ and $\overrightarrow{OB}$? Can we express \textit{some} points in the plane as linear combinations of $\overrightarrow{OA}$ and $\overrightarrow{OB}$?
70+
\end{question}
71+
72+
\end{exploration}
73+
74+
\begin{exploration}\label{exp:coordSystemLinCombs2}
75+
We will use the same set-up as in the previous exploration but introduce an additional vector $\overrightarrow{OC}$.
76+
77+
% https://www.geogebra.org/classic/b3k96x2w
78+
79+
\begin{center}
80+
\geogebra{b3k96x2w}{800}{600}
81+
\end{center}
82+
83+
\begin{question}
84+
Suppose we want to express $P_1$ using a coordinate system determined by three vectors $\overrightarrow{OA}$, $\overrightarrow{OB}$, and $\overrightarrow{OC}$. If the coordinates are to be of the form $(A\text{-coordinate}, B\text{-coordinate}, C\text{-coordinate})$, how many ways do you think there would be to express $P_1$? Fill in the missing coordinates for $P_1$ below.
85+
$$P_1=\left(\answer{1},\answer{1},0\right)$$
86+
$$P_1=\left(0,\answer{2},\answer{0.5}\right)$$
87+
$$P_1=\left(\answer{2}, 0, \answer{-0.5}\right)$$
88+
$$P_1=\left(\answer{3},-1,-1\right)$$
89+
\end{question}
90+
91+
\begin{question}
92+
Based on your work above, express $\overrightarrow{OP_1}$ as a linear combination of $\overrightarrow{OA}$, $\overrightarrow{OB}$, and $\overrightarrow{OC}$. How many ways do you think there are to do this?
93+
\end{question}
94+
95+
\begin{question}
96+
Compare and contrast the coordinate systems in this exploration and Exploration \ref{exp:coordSystemLinCombs1}.
97+
\end{question}
98+
6899
\end{exploration}
69100

70101
\end{document}

0 commit comments

Comments
 (0)