|
| 1 | +\documentclass{ximera} |
| 2 | +\input{../preamble.tex} |
| 3 | + |
| 4 | + \title{Review for Exam 2} \license{CC BY-NC-SA 4.0} |
| 5 | + |
| 6 | +\begin{document} |
| 7 | + |
| 8 | +\begin{abstract} |
| 9 | + \end{abstract} |
| 10 | +\maketitle |
| 11 | + |
| 12 | +\begin{onlineOnly} |
| 13 | +\section*{Review Problems for Exam 2} |
| 14 | +\end{onlineOnly} |
| 15 | + |
| 16 | +\begin{exercise} |
| 17 | +Let $V=\text{span}\left(\begin{bmatrix}2\\0\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}, \begin{bmatrix}-4\\0\\-2\end{bmatrix}\right)$. |
| 18 | +Recall that the span of a set of vectors in $\RR^n$ is a subspace of $\RR^n$. From the choices below select ALL sets that can serve as bases for $V$. |
| 19 | + |
| 20 | +\begin{selectAll} |
| 21 | + \choice{$\left\{ \begin{bmatrix}2\\0\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}, \begin{bmatrix}-4\\0\\-2\end{bmatrix}\right\}$} |
| 22 | + \choice[correct]{$\left\{ \begin{bmatrix}2\\0\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}\right\}$} |
| 23 | + \choice[correct]{$\left\{ \begin{bmatrix}0\\1\\1\end{bmatrix}, \begin{bmatrix}-4\\0\\-2\end{bmatrix}\right\}$} |
| 24 | + \choice{$\left\{ \begin{bmatrix}2\\0\\1\end{bmatrix}, \begin{bmatrix}-4\\0\\-2\end{bmatrix}\right\}$} |
| 25 | + \choice[correct]{$\left\{ \begin{bmatrix}2\\1\\2\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}\right\}$} |
| 26 | + \end{selectAll} |
| 27 | +\end{exercise} |
| 28 | + |
| 29 | +\begin{exercise} |
| 30 | +Let $\mathcal{B}=\left\{ \begin{bmatrix}1\\1\\0\end{bmatrix}, \begin{bmatrix}1\\2\\0\end{bmatrix}, \begin{bmatrix}0\\1\\2\end{bmatrix}\right\}$ be an ordered basis for $\RR^3$. (Mentally verify that $\mathcal{B}$ is a basis of $\RR^3$.) |
| 31 | + |
| 32 | +Let $\vec{v}=\begin{bmatrix}-1\\-3\\2\end{bmatrix}$ be a vector of $\RR^3$ (written with respect to the standard basis of $\RR^3$). |
| 33 | +Find the coordinate vector for $\vec{v}$ with respect to $\mathcal{B}$. |
| 34 | + |
| 35 | +$$\begin{bmatrix}\answer{2}\\\answer{-3}\\\answer{1}\end{bmatrix}$$ |
| 36 | +\end{exercise} |
| 37 | + |
| 38 | +\begin{exercise} |
| 39 | +Consider matrix $A$ and $\text{rref}(A)$ shown below. |
| 40 | +$$A=\begin{bmatrix}1&2&1&0&-1\\1&2&2&3&0\\0&0&1&3&1\end{bmatrix}\rightsquigarrow\begin{bmatrix}1&2&0&-3&-2\\0&0&1&3&1\\0&0&0&0&0\end{bmatrix}=\mbox{rref}(A)$$ |
| 41 | +Find each of the following: |
| 42 | +$$\text{rank}(A)=\answer{2}$$ |
| 43 | +$$\text{dim}\left(\text{row}(A)\right)=\answer{2}$$ |
| 44 | +$$\text{dim}\left(\text{col}(A)\right)=\answer{2}$$ |
| 45 | +$$\text{dim}\left(\text{null}(A)\right)=\answer{3}$$ |
| 46 | + |
| 47 | +Select an appropriate basis for $\text{row}(A)$. |
| 48 | +\begin{multipleChoice} |
| 49 | + \choice{$\left\{ \begin{bmatrix}1&2&1&0&-1\end{bmatrix}, \begin{bmatrix}1&2&2&3&0\end{bmatrix}, \begin{bmatrix}0&0&1&3&1\end{bmatrix}\right\}$} |
| 50 | + \choice{$\left\{ \begin{bmatrix}1&2&0&-3&-2\end{bmatrix}, \begin{bmatrix}0&0&1&3&1\end{bmatrix}, \begin{bmatrix}0&0&0&0&0\end{bmatrix}\right\}$} |
| 51 | + \choice[correct]{$\left\{ \begin{bmatrix}1&2&0&-3&-2\end{bmatrix}, \begin{bmatrix}0&0&1&3&1\end{bmatrix}\right\}$} |
| 52 | + \end{multipleChoice} |
| 53 | + |
| 54 | + Using the algorithm presented in this text, find a basis for $\text{col}(A)$. |
| 55 | + |
| 56 | + $$\left\{\begin{bmatrix}\answer{1}\\\answer{1}\\\answer{0}\end{bmatrix}, \begin{bmatrix}\answer{1}\\\answer{2}\\\answer{1}\end{bmatrix}\right\}$$ |
| 57 | + |
| 58 | +\end{exercise} |
| 59 | + |
| 60 | +\begin{exercise} |
| 61 | +Let $\mathcal{B}=\left\{\vec{v}_1, \vec{v}_2\right\}$ be a basis for the plane depicted below. Find the coordinate vector for $\vec{x}$ with respect to $\mathcal{B}$. |
| 62 | +\begin{center} |
| 63 | +\begin{tikzpicture}[scale=1] |
| 64 | +\draw[line width=0.5pt, gray](-2,1)--(0.5,6); |
| 65 | +\draw[line width=0.5pt, gray](-1,-2)--(3,6); |
| 66 | +\draw[line width=0.5pt, gray](1.5,-2)--(5.5,6); |
| 67 | +\draw[line width=0.5pt, gray](4,-2)--(8,6); |
| 68 | +\draw[line width=0.5pt, gray](6.5,-2)--(8,1); |
| 69 | +\draw[line width=0.5pt, gray](-2, 4.33)--(3,6); |
| 70 | +\draw[line width=0.5pt, gray](-2, 2.66)--(8,6); |
| 71 | +\draw[line width=0.5pt, gray](-2, 1)--(8,4.33); |
| 72 | +\draw[line width=0.5pt, gray](-2, -0.66)--(8,2.66); |
| 73 | +\draw[line width=0.5pt, gray](-1, -2)--(8,1); |
| 74 | +\draw[line width=0.5pt, gray](4,-2)--(8,-0.66); |
| 75 | + \draw[line width=2pt,blue,-stealth](0,0)--(1,2); |
| 76 | +\draw[line width=2pt,red,-stealth](0,0)--(3,1); |
| 77 | +\draw[line width=2pt,-stealth](0,0)--(7,4); |
| 78 | +\node[blue] at (0.5, 1.5) (p2) {$\vec{v}_1$}; |
| 79 | +\node[red] at (1.6, 0.2) (p2) {$\vec{v}_2$}; |
| 80 | +\node[] at (3.5, 2.3) (p2) {$\vec{x}$}; |
| 81 | +%\node[] at (-0.2, 0.2) (p2) {$\vec{O}$}; |
| 82 | + \end{tikzpicture} |
| 83 | + \end{center} |
| 84 | + |
| 85 | + $$\begin{bmatrix}\answer{1}\\\answer{2}\end{bmatrix}$$ |
| 86 | + |
| 87 | +\end{exercise} |
| 88 | + |
| 89 | +\begin{exercise} |
| 90 | +Suppose that $\mathcal{B}_1=\left\{\vec{v}_1, \vec{v}_2\right\}$ is an ordered basis for some subspace $V$ of $\RR^n$. Let $\mathcal{B}_2=\left\{-\vec{v}_2, -2\vec{v}_1\right\}$. Verify that $\mathcal{B}_2$ is also an ordered basis for $V$. |
| 91 | + |
| 92 | +Let $\vec{w}$ be a vector in $V$. If the coordinate vector for $\vec{w}$ with respect to $\mathcal{B}_1$ is $\begin{bmatrix}2\\-1\end{bmatrix}$, find the coordinate vector for $\vec{w}$ with respect to $\mathcal{B}_2$. |
| 93 | +$$\begin{bmatrix}\answer{1}\\\answer{-1}\end{bmatrix}$$ |
| 94 | + |
| 95 | +\end{exercise} |
| 96 | + |
| 97 | +\begin{exercise} |
| 98 | + |
| 99 | +Determine whether each set, $S$, of vectors is closed under vector addition, and scalar multiplication. |
| 100 | + |
| 101 | +Let $S$ be the set of all vectors contained in a sphere of radius 1 centered at the origin. |
| 102 | + |
| 103 | +\begin{center} |
| 104 | +\begin{tikzpicture} |
| 105 | + \shade[ball color = blue!40, opacity = 0.4] (0,0) circle (2cm); |
| 106 | + \draw (0,0) circle (2cm); |
| 107 | + \draw (-2,0) arc (180:360:2 and 0.6); |
| 108 | + \draw[dashed] (2,0) arc (0:180:2 and 0.6); |
| 109 | + \fill[fill=black] (0,0) circle (1pt); |
| 110 | + |
| 111 | + \draw[->,line width=1pt,blue,-stealth](0,0)--(-1.2,1.5); |
| 112 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(1,0); |
| 113 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(0,-1.5); |
| 114 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(1,-1); |
| 115 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(-1,-1.5); |
| 116 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(1.5,1); |
| 117 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(0,2); |
| 118 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(-1.5,0.6); |
| 119 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(1,-1.5); |
| 120 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(-0.5,1); |
| 121 | +\end{tikzpicture} |
| 122 | +\end{center} |
| 123 | + |
| 124 | +\begin{selectAll} |
| 125 | + \choice{$S$ is closed under scalar multiplication.} |
| 126 | + \choice{$S$ is closed under vector addition.} |
| 127 | + \choice[correct]{None of the above.} |
| 128 | + \end{selectAll} |
| 129 | + |
| 130 | +Let $S$ be the set of all vectors contained in an infinite double cone. |
| 131 | +\begin{center} |
| 132 | +\begin{tikzpicture} |
| 133 | +\fill[ |
| 134 | + top color=blue!40, |
| 135 | + bottom color=blue!10, |
| 136 | + shading=axis, |
| 137 | + opacity=0.4 |
| 138 | + ] |
| 139 | + (0,4) circle (2cm and 0.5cm); |
| 140 | + |
| 141 | + \fill[ |
| 142 | + top color=blue!40, |
| 143 | + bottom color=blue!10, |
| 144 | + shading=axis, |
| 145 | + opacity=0.4 |
| 146 | + ] |
| 147 | + (0,-4) circle (2cm and 0.5cm); |
| 148 | + |
| 149 | +\fill[ |
| 150 | + left color=blue!40!white, |
| 151 | + right color=blue!40!black, |
| 152 | + middle color=blue!40, |
| 153 | + shading=axis, |
| 154 | + opacity=0.4 |
| 155 | + ] |
| 156 | + (2,-4) -- (0,0) -- (-2,-4) arc (180:360:2cm and 0.5cm); |
| 157 | + |
| 158 | +\fill[ |
| 159 | + left color=blue!40!white, |
| 160 | + right color=blue!40!black, |
| 161 | + middle color=blue!40, |
| 162 | + shading=axis, |
| 163 | + opacity=0.4 |
| 164 | + ] |
| 165 | + (2,4) -- (0,0) -- (-2,4) arc (180:360:2cm and 0.5cm); |
| 166 | + |
| 167 | +\draw |
| 168 | + (-2,-4) -- (2,4); |
| 169 | + |
| 170 | + \draw |
| 171 | + (2,-4) -- (-2,4); |
| 172 | + |
| 173 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(-1,3); |
| 174 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(1,5); |
| 175 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(0,-5); |
| 176 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(1,-3); |
| 177 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(-1,-3.5); |
| 178 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(1.5,5); |
| 179 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(0,2); |
| 180 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(-0.5,4); |
| 181 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(1,-5); |
| 182 | +\draw[->,line width=1pt,blue,-stealth](0,0)--(-0.5,-4); |
| 183 | +\end{tikzpicture} |
| 184 | +\end{center} |
| 185 | + |
| 186 | +\begin{selectAll} |
| 187 | + \choice[correct]{$S$ is closed under scalar multiplication.} |
| 188 | + \choice{$S$ is closed under vector addition.} |
| 189 | + \choice{None of the above.} |
| 190 | + \end{selectAll} |
| 191 | +\end{exercise} |
| 192 | + |
| 193 | +\begin{exercise} |
| 194 | +Find the dimension of $V$ if $$V=\text{span}\left(\begin{bmatrix}1\\2\\-1\\1\end{bmatrix},\begin{bmatrix}0\\2\\1\\-1\end{bmatrix}, \begin{bmatrix}2\\2\\-3\\3\end{bmatrix}, \begin{bmatrix}-1\\-2\\1\\-1\end{bmatrix}\right) $$ |
| 195 | +$$\text{dim}(V)=\answer{2}$$ |
| 196 | +\end{exercise} |
| 197 | + |
| 198 | +\begin{exercise} |
| 199 | + |
| 200 | +True or False? If False, you should come up with a counterexample. If True, can you give a proof? |
| 201 | + |
| 202 | + \begin{enumerate} |
| 203 | + \item If $V$ is a subspace of $\RR^n$ and $\vec{x}+\vec{y}$ is in $V$, then $\vec{x}$ is in $V$ or $\vec{y}$ is in $V$. |
| 204 | + |
| 205 | + \begin{multipleChoice} |
| 206 | + \choice{True} |
| 207 | + \choice[correct]{False} |
| 208 | + \end{multipleChoice} |
| 209 | + |
| 210 | +\item If $V$ is a set in $\RR^n$ such that $c_1{\vec{v}_1}+c_2{\vec{v}_2}$ is in $V$ whenever ${\vec{v}_1}$ and ${\vec{v}_2}$ are in $V$ for any scalars $c_1$, $c_2$, then $V$ is a subspace. |
| 211 | + |
| 212 | + \begin{multipleChoice} |
| 213 | + \choice[correct]{True} |
| 214 | + \choice{False} |
| 215 | + \end{multipleChoice} |
| 216 | + |
| 217 | + \item Every set of four non-zero vectors in $\RR^4$ is a basis. |
| 218 | + |
| 219 | + \begin{multipleChoice} |
| 220 | + \choice{True} |
| 221 | + \choice[correct]{False} |
| 222 | + \end{multipleChoice} |
| 223 | + |
| 224 | + \item $\RR^3$ has a basis of the form $\left\{\vec{x},\vec{x}+\vec{y},\vec{y}\right\}$. |
| 225 | + |
| 226 | + \begin{multipleChoice} |
| 227 | + \choice{True} |
| 228 | + \choice[correct]{False} |
| 229 | + \end{multipleChoice} |
| 230 | + \end{enumerate} |
| 231 | + |
| 232 | + |
| 233 | +\end{exercise} |
| 234 | + |
| 235 | +\begin{exercise} |
| 236 | +Suppose a linear transformation $T:\RR^2\rightarrow\RR^2$ is such that |
| 237 | +$$T\left(\begin{bmatrix}2\\-3\end{bmatrix}\right)=\begin{bmatrix}1\\0\end{bmatrix}$$ |
| 238 | +$$T\left(\begin{bmatrix}-1\\7\end{bmatrix}\right)=\begin{bmatrix}2\\1\end{bmatrix}$$ |
| 239 | +Then, |
| 240 | +$$T\left(\begin{bmatrix}1\\4\end{bmatrix}\right)=\begin{bmatrix}\answer{3}\\\answer{1}\end{bmatrix}$$ |
| 241 | + |
| 242 | + \end{exercise} |
| 243 | + |
| 244 | + \begin{exercise} |
| 245 | +Find the standard matrix $M$ of a linear transformation $T_M:\RR^3\rightarrow \RR^2$ if |
| 246 | +$$T\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right)=\begin{bmatrix}3\\0\end{bmatrix};\quad T\left(\begin{bmatrix}0\\1\\1\end{bmatrix}\right)=\begin{bmatrix}1\\4\end{bmatrix};\quad T\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right)=\begin{bmatrix}2\\2\end{bmatrix}$$ |
| 247 | + |
| 248 | +$$M=\begin{bmatrix}\answer{2} & \answer{1} & \answer{0}\\\answer{-1} &\answer{1} & \answer{3}\end{bmatrix}$$ |
| 249 | + |
| 250 | + \end{exercise} |
| 251 | + |
| 252 | + \begin{exercise} |
| 253 | +Suppose that an invertible linear transformation $T:\RR^2\rightarrow \RR^2$ is such that |
| 254 | +$$T\left(\begin{bmatrix}3\\-1\end{bmatrix}\right)=\begin{bmatrix}4\\-7\end{bmatrix};\quad T\left(\begin{bmatrix}2\\1\end{bmatrix}\right)=\begin{bmatrix}-5\\4\end{bmatrix}$$ |
| 255 | + |
| 256 | +Find the vector whose image under $T$ is $\begin{bmatrix}3\\-10\end{bmatrix}$ |
| 257 | + |
| 258 | +$$T\left(\begin{bmatrix}\answer{8}\\\answer{-1}\end{bmatrix}\right)=\begin{bmatrix}3\\-10\end{bmatrix}$$ |
| 259 | + |
| 260 | + \end{exercise} |
| 261 | + |
| 262 | + \begin{exercise} |
| 263 | + |
| 264 | +True or False? If False, you should come up with a counterexample. If True, can you give a proof? |
| 265 | + |
| 266 | + \begin{enumerate} |
| 267 | + \item $T : \RR^2 \to \RR^2$, given by $T(x, y) = (x, -y)$, is a linear transformation. |
| 268 | + |
| 269 | + \begin{multipleChoice} |
| 270 | + \choice[correct]{True} |
| 271 | + \choice{False} |
| 272 | + \end{multipleChoice} |
| 273 | + |
| 274 | + \item $T : \RR^n \to \RR$, given by $T(\vec{x}) = \vec{x} \cdot \vec{z}$ for some fixed vector $\vec{z} \in \RR^n$, is a linear transformation. |
| 275 | + |
| 276 | + \begin{multipleChoice} |
| 277 | + \choice[correct]{True} |
| 278 | + \choice{False} |
| 279 | + \end{multipleChoice} |
| 280 | + |
| 281 | +\item $T : \RR \to \RR$, given by $T(x) = x^2$, is a linear transformation. |
| 282 | + |
| 283 | + \begin{multipleChoice} |
| 284 | + \choice{True} |
| 285 | + \choice[correct]{False} |
| 286 | + \end{multipleChoice} |
| 287 | + |
| 288 | + \item Let $T : \RR^n \to \RR^m$ be a linear transformation and let $\vec{v}_{1}, \dots, \vec{v}_{k}$ denote vectors in $\RR^n$. If $\{T(\vec{v}_{1}), \dots, T(\vec{v}_{k})\}$ is linearly independent, then $\{\vec{v}_{1}, \dots, \vec{v}_{k}\}$ is also linearly independent. |
| 289 | + |
| 290 | + \begin{multipleChoice} |
| 291 | + \choice[correct]{True} |
| 292 | + \choice{False} |
| 293 | + \end{multipleChoice} |
| 294 | + |
| 295 | + \item Let $T : \RR^2 \to \RR^2$ be a linear transformation and suppose $\vec{v}_{1}, \vec{v}_{2}$ denote vectors in $\RR^2$. If $\{\vec{v}_{1}, \vec{v}_{2}\}$ is linearly independent, then $\{T(\vec{v}_{1}), T(\vec{v}_{2})\}$ is also linearly independent. |
| 296 | + |
| 297 | + \begin{multipleChoice} |
| 298 | + \choice{True} |
| 299 | + \choice[correct]{False} |
| 300 | + \end{multipleChoice} |
| 301 | + \end{enumerate} |
| 302 | + |
| 303 | + |
| 304 | +\end{exercise} |
| 305 | + |
| 306 | +\begin{exercise} |
| 307 | +Let $$A=\begin{bmatrix}2 & 1 & -1 & 3\\1 & 0 & 3 & 1\\1 & 1 & -4 & 2\end{bmatrix}$$ |
| 308 | + |
| 309 | +Use techniques discussed in \href{https://ximera.osu.edu/linearalgebrav3/LinearAlgebraInteractiveIntro/LTR-0050/main}{Image and Kernel of a Linear Transformation} to find the basis for the kernel and the image of the linear transformation, $T_A$, induced by $A$. |
| 310 | + |
| 311 | +Basis for $\mbox{im}(T_A)$: $\left\{\begin{bmatrix}\answer{2}\\\answer{1}\\\answer{1}\end{bmatrix}, \begin{bmatrix}\answer{1}\\\answer{0}\\\answer{1}\end{bmatrix}\right\}$ |
| 312 | + |
| 313 | +Basis for $\mbox{ker}(T_A)$: $\left\{\begin{bmatrix}\answer{-3}\\\answer{7}\\1\\0\end{bmatrix}, \begin{bmatrix}\answer{-1}\\\answer{-1}\\0\\1\end{bmatrix}\right\}$ |
| 314 | + |
| 315 | + \end{exercise} |
| 316 | +\end{document} |
0 commit comments