Skip to content

Commit 9149eae

Browse files
committed
added review problems
1 parent 4208cb8 commit 9149eae

File tree

2 files changed

+317
-0
lines changed

2 files changed

+317
-0
lines changed

exam2Review/main.tex

Lines changed: 316 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,316 @@
1+
\documentclass{ximera}
2+
\input{../preamble.tex}
3+
4+
\title{Review for Exam 2} \license{CC BY-NC-SA 4.0}
5+
6+
\begin{document}
7+
8+
\begin{abstract}
9+
\end{abstract}
10+
\maketitle
11+
12+
\begin{onlineOnly}
13+
\section*{Review Problems for Exam 2}
14+
\end{onlineOnly}
15+
16+
\begin{exercise}
17+
Let $V=\text{span}\left(\begin{bmatrix}2\\0\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}, \begin{bmatrix}-4\\0\\-2\end{bmatrix}\right)$.
18+
Recall that the span of a set of vectors in $\RR^n$ is a subspace of $\RR^n$. From the choices below select ALL sets that can serve as bases for $V$.
19+
20+
\begin{selectAll}
21+
\choice{$\left\{ \begin{bmatrix}2\\0\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}, \begin{bmatrix}-4\\0\\-2\end{bmatrix}\right\}$}
22+
\choice[correct]{$\left\{ \begin{bmatrix}2\\0\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}\right\}$}
23+
\choice[correct]{$\left\{ \begin{bmatrix}0\\1\\1\end{bmatrix}, \begin{bmatrix}-4\\0\\-2\end{bmatrix}\right\}$}
24+
\choice{$\left\{ \begin{bmatrix}2\\0\\1\end{bmatrix}, \begin{bmatrix}-4\\0\\-2\end{bmatrix}\right\}$}
25+
\choice[correct]{$\left\{ \begin{bmatrix}2\\1\\2\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}\right\}$}
26+
\end{selectAll}
27+
\end{exercise}
28+
29+
\begin{exercise}
30+
Let $\mathcal{B}=\left\{ \begin{bmatrix}1\\1\\0\end{bmatrix}, \begin{bmatrix}1\\2\\0\end{bmatrix}, \begin{bmatrix}0\\1\\2\end{bmatrix}\right\}$ be an ordered basis for $\RR^3$. (Mentally verify that $\mathcal{B}$ is a basis of $\RR^3$.)
31+
32+
Let $\vec{v}=\begin{bmatrix}-1\\-3\\2\end{bmatrix}$ be a vector of $\RR^3$ (written with respect to the standard basis of $\RR^3$).
33+
Find the coordinate vector for $\vec{v}$ with respect to $\mathcal{B}$.
34+
35+
$$\begin{bmatrix}\answer{2}\\\answer{-3}\\\answer{1}\end{bmatrix}$$
36+
\end{exercise}
37+
38+
\begin{exercise}
39+
Consider matrix $A$ and $\text{rref}(A)$ shown below.
40+
$$A=\begin{bmatrix}1&2&1&0&-1\\1&2&2&3&0\\0&0&1&3&1\end{bmatrix}\rightsquigarrow\begin{bmatrix}1&2&0&-3&-2\\0&0&1&3&1\\0&0&0&0&0\end{bmatrix}=\mbox{rref}(A)$$
41+
Find each of the following:
42+
$$\text{rank}(A)=\answer{2}$$
43+
$$\text{dim}\left(\text{row}(A)\right)=\answer{2}$$
44+
$$\text{dim}\left(\text{col}(A)\right)=\answer{2}$$
45+
$$\text{dim}\left(\text{null}(A)\right)=\answer{3}$$
46+
47+
Select an appropriate basis for $\text{row}(A)$.
48+
\begin{multipleChoice}
49+
\choice{$\left\{ \begin{bmatrix}1&2&1&0&-1\end{bmatrix}, \begin{bmatrix}1&2&2&3&0\end{bmatrix}, \begin{bmatrix}0&0&1&3&1\end{bmatrix}\right\}$}
50+
\choice{$\left\{ \begin{bmatrix}1&2&0&-3&-2\end{bmatrix}, \begin{bmatrix}0&0&1&3&1\end{bmatrix}, \begin{bmatrix}0&0&0&0&0\end{bmatrix}\right\}$}
51+
\choice[correct]{$\left\{ \begin{bmatrix}1&2&0&-3&-2\end{bmatrix}, \begin{bmatrix}0&0&1&3&1\end{bmatrix}\right\}$}
52+
\end{multipleChoice}
53+
54+
Using the algorithm presented in this text, find a basis for $\text{col}(A)$.
55+
56+
$$\left\{\begin{bmatrix}\answer{1}\\\answer{1}\\\answer{0}\end{bmatrix}, \begin{bmatrix}\answer{1}\\\answer{2}\\\answer{1}\end{bmatrix}\right\}$$
57+
58+
\end{exercise}
59+
60+
\begin{exercise}
61+
Let $\mathcal{B}=\left\{\vec{v}_1, \vec{v}_2\right\}$ be a basis for the plane depicted below. Find the coordinate vector for $\vec{x}$ with respect to $\mathcal{B}$.
62+
\begin{center}
63+
\begin{tikzpicture}[scale=1]
64+
\draw[line width=0.5pt, gray](-2,1)--(0.5,6);
65+
\draw[line width=0.5pt, gray](-1,-2)--(3,6);
66+
\draw[line width=0.5pt, gray](1.5,-2)--(5.5,6);
67+
\draw[line width=0.5pt, gray](4,-2)--(8,6);
68+
\draw[line width=0.5pt, gray](6.5,-2)--(8,1);
69+
\draw[line width=0.5pt, gray](-2, 4.33)--(3,6);
70+
\draw[line width=0.5pt, gray](-2, 2.66)--(8,6);
71+
\draw[line width=0.5pt, gray](-2, 1)--(8,4.33);
72+
\draw[line width=0.5pt, gray](-2, -0.66)--(8,2.66);
73+
\draw[line width=0.5pt, gray](-1, -2)--(8,1);
74+
\draw[line width=0.5pt, gray](4,-2)--(8,-0.66);
75+
\draw[line width=2pt,blue,-stealth](0,0)--(1,2);
76+
\draw[line width=2pt,red,-stealth](0,0)--(3,1);
77+
\draw[line width=2pt,-stealth](0,0)--(7,4);
78+
\node[blue] at (0.5, 1.5) (p2) {$\vec{v}_1$};
79+
\node[red] at (1.6, 0.2) (p2) {$\vec{v}_2$};
80+
\node[] at (3.5, 2.3) (p2) {$\vec{x}$};
81+
%\node[] at (-0.2, 0.2) (p2) {$\vec{O}$};
82+
\end{tikzpicture}
83+
\end{center}
84+
85+
$$\begin{bmatrix}\answer{1}\\\answer{2}\end{bmatrix}$$
86+
87+
\end{exercise}
88+
89+
\begin{exercise}
90+
Suppose that $\mathcal{B}_1=\left\{\vec{v}_1, \vec{v}_2\right\}$ is an ordered basis for some subspace $V$ of $\RR^n$. Let $\mathcal{B}_2=\left\{-\vec{v}_2, -2\vec{v}_1\right\}$. Verify that $\mathcal{B}_2$ is also an ordered basis for $V$.
91+
92+
Let $\vec{w}$ be a vector in $V$. If the coordinate vector for $\vec{w}$ with respect to $\mathcal{B}_1$ is $\begin{bmatrix}2\\-1\end{bmatrix}$, find the coordinate vector for $\vec{w}$ with respect to $\mathcal{B}_2$.
93+
$$\begin{bmatrix}\answer{1}\\\answer{-1}\end{bmatrix}$$
94+
95+
\end{exercise}
96+
97+
\begin{exercise}
98+
99+
Determine whether each set, $S$, of vectors is closed under vector addition, and scalar multiplication.
100+
101+
Let $S$ be the set of all vectors contained in a sphere of radius 1 centered at the origin.
102+
103+
\begin{center}
104+
\begin{tikzpicture}
105+
\shade[ball color = blue!40, opacity = 0.4] (0,0) circle (2cm);
106+
\draw (0,0) circle (2cm);
107+
\draw (-2,0) arc (180:360:2 and 0.6);
108+
\draw[dashed] (2,0) arc (0:180:2 and 0.6);
109+
\fill[fill=black] (0,0) circle (1pt);
110+
111+
\draw[->,line width=1pt,blue,-stealth](0,0)--(-1.2,1.5);
112+
\draw[->,line width=1pt,blue,-stealth](0,0)--(1,0);
113+
\draw[->,line width=1pt,blue,-stealth](0,0)--(0,-1.5);
114+
\draw[->,line width=1pt,blue,-stealth](0,0)--(1,-1);
115+
\draw[->,line width=1pt,blue,-stealth](0,0)--(-1,-1.5);
116+
\draw[->,line width=1pt,blue,-stealth](0,0)--(1.5,1);
117+
\draw[->,line width=1pt,blue,-stealth](0,0)--(0,2);
118+
\draw[->,line width=1pt,blue,-stealth](0,0)--(-1.5,0.6);
119+
\draw[->,line width=1pt,blue,-stealth](0,0)--(1,-1.5);
120+
\draw[->,line width=1pt,blue,-stealth](0,0)--(-0.5,1);
121+
\end{tikzpicture}
122+
\end{center}
123+
124+
\begin{selectAll}
125+
\choice{$S$ is closed under scalar multiplication.}
126+
\choice{$S$ is closed under vector addition.}
127+
\choice[correct]{None of the above.}
128+
\end{selectAll}
129+
130+
Let $S$ be the set of all vectors contained in an infinite double cone.
131+
\begin{center}
132+
\begin{tikzpicture}
133+
\fill[
134+
top color=blue!40,
135+
bottom color=blue!10,
136+
shading=axis,
137+
opacity=0.4
138+
]
139+
(0,4) circle (2cm and 0.5cm);
140+
141+
\fill[
142+
top color=blue!40,
143+
bottom color=blue!10,
144+
shading=axis,
145+
opacity=0.4
146+
]
147+
(0,-4) circle (2cm and 0.5cm);
148+
149+
\fill[
150+
left color=blue!40!white,
151+
right color=blue!40!black,
152+
middle color=blue!40,
153+
shading=axis,
154+
opacity=0.4
155+
]
156+
(2,-4) -- (0,0) -- (-2,-4) arc (180:360:2cm and 0.5cm);
157+
158+
\fill[
159+
left color=blue!40!white,
160+
right color=blue!40!black,
161+
middle color=blue!40,
162+
shading=axis,
163+
opacity=0.4
164+
]
165+
(2,4) -- (0,0) -- (-2,4) arc (180:360:2cm and 0.5cm);
166+
167+
\draw
168+
(-2,-4) -- (2,4);
169+
170+
\draw
171+
(2,-4) -- (-2,4);
172+
173+
\draw[->,line width=1pt,blue,-stealth](0,0)--(-1,3);
174+
\draw[->,line width=1pt,blue,-stealth](0,0)--(1,5);
175+
\draw[->,line width=1pt,blue,-stealth](0,0)--(0,-5);
176+
\draw[->,line width=1pt,blue,-stealth](0,0)--(1,-3);
177+
\draw[->,line width=1pt,blue,-stealth](0,0)--(-1,-3.5);
178+
\draw[->,line width=1pt,blue,-stealth](0,0)--(1.5,5);
179+
\draw[->,line width=1pt,blue,-stealth](0,0)--(0,2);
180+
\draw[->,line width=1pt,blue,-stealth](0,0)--(-0.5,4);
181+
\draw[->,line width=1pt,blue,-stealth](0,0)--(1,-5);
182+
\draw[->,line width=1pt,blue,-stealth](0,0)--(-0.5,-4);
183+
\end{tikzpicture}
184+
\end{center}
185+
186+
\begin{selectAll}
187+
\choice[correct]{$S$ is closed under scalar multiplication.}
188+
\choice{$S$ is closed under vector addition.}
189+
\choice{None of the above.}
190+
\end{selectAll}
191+
\end{exercise}
192+
193+
\begin{exercise}
194+
Find the dimension of $V$ if $$V=\text{span}\left(\begin{bmatrix}1\\2\\-1\\1\end{bmatrix},\begin{bmatrix}0\\2\\1\\-1\end{bmatrix}, \begin{bmatrix}2\\2\\-3\\3\end{bmatrix}, \begin{bmatrix}-1\\-2\\1\\-1\end{bmatrix}\right) $$
195+
$$\text{dim}(V)=\answer{2}$$
196+
\end{exercise}
197+
198+
\begin{exercise}
199+
200+
True or False? If False, you should come up with a counterexample. If True, can you give a proof?
201+
202+
\begin{enumerate}
203+
\item If $V$ is a subspace of $\RR^n$ and $\vec{x}+\vec{y}$ is in $V$, then $\vec{x}$ is in $V$ or $\vec{y}$ is in $V$.
204+
205+
\begin{multipleChoice}
206+
\choice{True}
207+
\choice[correct]{False}
208+
\end{multipleChoice}
209+
210+
\item If $V$ is a set in $\RR^n$ such that $c_1{\vec{v}_1}+c_2{\vec{v}_2}$ is in $V$ whenever ${\vec{v}_1}$ and ${\vec{v}_2}$ are in $V$ for any scalars $c_1$, $c_2$, then $V$ is a subspace.
211+
212+
\begin{multipleChoice}
213+
\choice[correct]{True}
214+
\choice{False}
215+
\end{multipleChoice}
216+
217+
\item Every set of four non-zero vectors in $\RR^4$ is a basis.
218+
219+
\begin{multipleChoice}
220+
\choice{True}
221+
\choice[correct]{False}
222+
\end{multipleChoice}
223+
224+
\item $\RR^3$ has a basis of the form $\left\{\vec{x},\vec{x}+\vec{y},\vec{y}\right\}$.
225+
226+
\begin{multipleChoice}
227+
\choice{True}
228+
\choice[correct]{False}
229+
\end{multipleChoice}
230+
\end{enumerate}
231+
232+
233+
\end{exercise}
234+
235+
\begin{exercise}
236+
Suppose a linear transformation $T:\RR^2\rightarrow\RR^2$ is such that
237+
$$T\left(\begin{bmatrix}2\\-3\end{bmatrix}\right)=\begin{bmatrix}1\\0\end{bmatrix}$$
238+
$$T\left(\begin{bmatrix}-1\\7\end{bmatrix}\right)=\begin{bmatrix}2\\1\end{bmatrix}$$
239+
Then,
240+
$$T\left(\begin{bmatrix}1\\4\end{bmatrix}\right)=\begin{bmatrix}\answer{3}\\\answer{1}\end{bmatrix}$$
241+
242+
\end{exercise}
243+
244+
\begin{exercise}
245+
Find the standard matrix $M$ of a linear transformation $T_M:\RR^3\rightarrow \RR^2$ if
246+
$$T\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right)=\begin{bmatrix}3\\0\end{bmatrix};\quad T\left(\begin{bmatrix}0\\1\\1\end{bmatrix}\right)=\begin{bmatrix}1\\4\end{bmatrix};\quad T\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right)=\begin{bmatrix}2\\2\end{bmatrix}$$
247+
248+
$$M=\begin{bmatrix}\answer{2} & \answer{1} & \answer{0}\\\answer{-1} &\answer{1} & \answer{3}\end{bmatrix}$$
249+
250+
\end{exercise}
251+
252+
\begin{exercise}
253+
Suppose that an invertible linear transformation $T:\RR^2\rightarrow \RR^2$ is such that
254+
$$T\left(\begin{bmatrix}3\\-1\end{bmatrix}\right)=\begin{bmatrix}4\\-7\end{bmatrix};\quad T\left(\begin{bmatrix}2\\1\end{bmatrix}\right)=\begin{bmatrix}-5\\4\end{bmatrix}$$
255+
256+
Find the vector whose image under $T$ is $\begin{bmatrix}3\\-10\end{bmatrix}$
257+
258+
$$T\left(\begin{bmatrix}\answer{8}\\\answer{-1}\end{bmatrix}\right)=\begin{bmatrix}3\\-10\end{bmatrix}$$
259+
260+
\end{exercise}
261+
262+
\begin{exercise}
263+
264+
True or False? If False, you should come up with a counterexample. If True, can you give a proof?
265+
266+
\begin{enumerate}
267+
\item $T : \RR^2 \to \RR^2$, given by $T(x, y) = (x, -y)$, is a linear transformation.
268+
269+
\begin{multipleChoice}
270+
\choice[correct]{True}
271+
\choice{False}
272+
\end{multipleChoice}
273+
274+
\item $T : \RR^n \to \RR$, given by $T(\vec{x}) = \vec{x} \cdot \vec{z}$ for some fixed vector $\vec{z} \in \RR^n$, is a linear transformation.
275+
276+
\begin{multipleChoice}
277+
\choice[correct]{True}
278+
\choice{False}
279+
\end{multipleChoice}
280+
281+
\item $T : \RR \to \RR$, given by $T(x) = x^2$, is a linear transformation.
282+
283+
\begin{multipleChoice}
284+
\choice{True}
285+
\choice[correct]{False}
286+
\end{multipleChoice}
287+
288+
\item Let $T : \RR^n \to \RR^m$ be a linear transformation and let $\vec{v}_{1}, \dots, \vec{v}_{k}$ denote vectors in $\RR^n$. If $\{T(\vec{v}_{1}), \dots, T(\vec{v}_{k})\}$ is linearly independent, then $\{\vec{v}_{1}, \dots, \vec{v}_{k}\}$ is also linearly independent.
289+
290+
\begin{multipleChoice}
291+
\choice[correct]{True}
292+
\choice{False}
293+
\end{multipleChoice}
294+
295+
\item Let $T : \RR^2 \to \RR^2$ be a linear transformation and suppose $\vec{v}_{1}, \vec{v}_{2}$ denote vectors in $\RR^2$. If $\{\vec{v}_{1}, \vec{v}_{2}\}$ is linearly independent, then $\{T(\vec{v}_{1}), T(\vec{v}_{2})\}$ is also linearly independent.
296+
297+
\begin{multipleChoice}
298+
\choice{True}
299+
\choice[correct]{False}
300+
\end{multipleChoice}
301+
\end{enumerate}
302+
303+
304+
\end{exercise}
305+
306+
\begin{exercise}
307+
Let $$A=\begin{bmatrix}2 & 1 & -1 & 3\\1 & 0 & 3 & 1\\1 & 1 & -4 & 2\end{bmatrix}$$
308+
309+
Use techniques discussed in \href{https://ximera.osu.edu/linearalgebrav3/LinearAlgebraInteractiveIntro/LTR-0050/main}{Image and Kernel of a Linear Transformation} to find the basis for the kernel and the image of the linear transformation, $T_A$, induced by $A$.
310+
311+
Basis for $\mbox{im}(T_A)$: $\left\{\begin{bmatrix}\answer{2}\\\answer{1}\\\answer{1}\end{bmatrix}, \begin{bmatrix}\answer{1}\\\answer{0}\\\answer{1}\end{bmatrix}\right\}$
312+
313+
Basis for $\mbox{ker}(T_A)$: $\left\{\begin{bmatrix}\answer{-3}\\\answer{7}\\1\\0\end{bmatrix}, \begin{bmatrix}\answer{-1}\\\answer{-1}\\0\\1\end{bmatrix}\right\}$
314+
315+
\end{exercise}
316+
\end{document}

week9.tex

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -13,4 +13,5 @@
1313
\activity{LTR-0020/main}
1414
\activity{LTR-0050/main}
1515
\activity{LTR-0030/main}
16+
\activity{exam2Review/main}
1617
\end{document}

0 commit comments

Comments
 (0)