Skip to content

Commit 9de2ae6

Browse files
committed
Week 10
1 parent 72d1191 commit 9de2ae6

File tree

3 files changed

+103
-89
lines changed

3 files changed

+103
-89
lines changed

DET-0010/main.tex

Lines changed: 34 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -16,9 +16,9 @@ \section*{Finding the Determinant}
1616

1717
In this section we will define a function that assigns to each square matrix $A$ a scalar output called the \dfn{determinant of $A$}. We will denote the determinant of $A$ by $\det{A}$. For a matrix with real number entries, the output of the determinant function will always be a real number.
1818

19-
One important property of the determinant is its connection to matrix inverses. We will find that a matrix $A$ is singular if and only if $\det{A}=0$. For nonsingular matrices, we will establish a formula that gives the inverse of a matrix exclusively in terms of determinants. This property will be addressed in detail in \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/DET-0040/main}{Properties of the Determinant}, and \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/DET-0060/main}{Determinants and Inverses of Nonsingular Matrices}.
19+
One important property of the determinant is its connection to matrix inverses. We will find that a matrix $A$ is singular if and only if $\det{A}=0$. %For nonsingular matrices, we will establish a formula that gives the inverse of a matrix exclusively in terms of determinants. This property will be addressed in detail in \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/DET-0040/main}{Properties of the Determinant}, and \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/DET-0060/main}{Determinants and Inverses of Nonsingular Matrices}.
2020

21-
Geometrically speaking, the determinant of a matrix of a linear transformation is the factor by which the area (or volume or hypervolume) is scaled by the transformation. This will be discussed in \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/DET-0070/main}{Determinants as Areas and Volumes}.
21+
Geometrically speaking, the determinant of a matrix of a linear transformation is the factor by which the area (or volume or hypervolume) is scaled by the transformation. %This will be discussed in \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/DET-0070/main}{Determinants as Areas and Volumes}.
2222

2323
\subsection*{Cofactor Expansion Along the Top Row}
2424
To start from the beginning, let us define the determinant of a $1\times 1$ matrix.
@@ -47,15 +47,19 @@ \subsection*{Cofactor Expansion Along the Top Row}
4747
\begin{example}\label{ex:threebythreedet1}
4848
Find $\det{A}$ if
4949
$$A=\begin{bmatrix}3&-2&1\\5&-1&2\\1&4&1\end{bmatrix}$$
50+
5051
\begin{explanation}
52+
We will use three color-coded copies of the matrix $A$
53+
$$A=\begin{bmatrix}{\color{blue}3}&-2&1\\5&{\color{blue}-1}&{\color{blue}2}\\1&{\color{blue}4}&{\color{blue}1}\end{bmatrix},\quad A=\begin{bmatrix}3&{\color{red}-2}&1\\{\color{red}5}&-1&{\color{red}2}\\{\color{red}1}&4&{\color{red}1}\end{bmatrix},\quad A=\begin{bmatrix}3&-2&{\color{brown}1}\\{\color{brown}5}&{\color{brown}-1}&2\\{\color{brown}1}&{\color{brown}4}&1\end{bmatrix}$$
54+
5155
\begin{align*}
52-
\det{A}&=(3)\begin{vmatrix}-1&2\\4&1\end{vmatrix}-(-2)\begin{vmatrix}5&2\\1&1\end{vmatrix}+(1)\begin{vmatrix}5&-1\\1&4\end{vmatrix}\\
56+
\det{A}&={\color{blue}(3)\begin{vmatrix}-1&2\\4&1\end{vmatrix}}-{\color{red}(-2)\begin{vmatrix}5&2\\1&1\end{vmatrix}}+{\color{brown}(1)\begin{vmatrix}5&-1\\1&4\end{vmatrix}}\\
5357
&=(3)(-1-8)-(-2)(5-2)+(1)(20+1)\\
5458
&=-27+6+21\\
5559
&=0
5660
\end{align*}
5761

58-
\youtube{aR2w-viFcvI}
62+
%\youtube{aR2w-viFcvI}
5963
\end{explanation}
6064
\end{example}
6165

@@ -125,7 +129,7 @@ \subsection*{Cofactor Expansion Along the Top Row}
125129
&=57
126130
\end{align*}
127131

128-
\youtube{YIJq7TqncyU}
132+
%\youtube{YIJq7TqncyU}
129133
\end{explanation}
130134
\end{example}
131135

@@ -300,66 +304,57 @@ \subsection*{Determinants of Some Special Matrices}
300304

301305
\section*{Practice Problems}
302306

303-
\emph{Problems \ref{prob:2x2det1}-\ref{prob:laplace}}
304-
305-
Find the determinant of each matrix.
306-
307-
\begin{problem}\label{prob:2x2det1}
307+
\begin{problem}\label{prob:2x2det1} Find the determinant.
308308
$$A=\begin{bmatrix}4&-2\\3&7\end{bmatrix}$$
309309
Answer:
310310
$$\det{A}=\answer{34}$$
311311
\end{problem}
312312

313-
\begin{problem}\label{prob:2x2det2}
313+
\begin{problem}\label{prob:2x2det2} Find the determinant.
314314
$$B=\begin{bmatrix}5&-1&0\\0&3&-2\\1&-1&2\end{bmatrix}$$
315315
Answer:
316316
$$\text{det}(B)=\answer{22}$$
317317
\end{problem}
318318

319-
\begin{problem}\label{prob:laplace}
319+
\begin{problem}\label{prob:laplace} Find the determinant.
320320
$$C=\begin{bmatrix}1&-2&0&0&0\\0&-4&1&1&0\\3&0&-1&0&1\\0&0&4&1&0\\-1&-2&0&0&0\end{bmatrix}$$
321321
Answer:
322322
$$\det(C)=\answer{12}$$
323323
\end{problem}
324324

325325

326-
\begin{problem}\label{prob:toprowexp2x2}
327-
Show that Definition \ref{def:toprowexpansion} is consistent with Definition \ref{def:twobytwodet} by verifying that both produce the same result when applied to a $2\times 2$ matrix.
328-
\end{problem}
326+
% \begin{problem}\label{prob:toprowexp2x2}
327+
% Show that Definition \ref{def:toprowexpansion} is consistent with Definition \ref{def:twobytwodet} by verifying that both produce the same result when applied to a $2\times 2$ matrix.
328+
% \end{problem}
329329

330330
\begin{problem}\label{prob:detOfTrans}
331-
Prove Theorem \ref{th:detoftrans}.
331+
Prove that for a square matrix $A$, $\det{A^T}=\det{A}$. (Theorem \ref{th:detoftrans})
332332
\end{problem}
333333

334334
\begin{problem}\label{prob:detrowswitch}
335-
Let $B'$ be a matrix obtained from $B$ of Problem \ref{prob:2x2det2} by switching the first and the second row of $B$. Compute the determinant of $B'$. What do you observe?
336-
\end{problem}
337-
338-
\begin{problem}\label{prob:2x2rowswitchproof}
339-
Make a conjecture about what happens to the determinant of a matrix if two rows of a matrix are switched. Prove your conjecture for a $2\times 2$ matrix.
340-
\end{problem}
335+
Let $$A=\begin{bmatrix}-2&1&3\\0&4&0\\-1&1&2\end{bmatrix}$$
341336

342-
\begin{problem}\label{prob:scalarmultrowdet} Let $B'$ be a matrix obtained from $B$ of Problem \ref{prob:2x2det2} by multiplying the middle row by $-3$. Compute the determinant of $B'$. What do you observe?
343-
\end{problem}
344-
345-
\begin{problem}\label{prob:rowtimesconstant2x2proof}
346-
Make a conjecture about what happens to the determinant of a matrix if one of the rows is multiplied by a constant. Prove your conjecture for a $2\times 2$ matrix.
347-
\end{problem}
337+
\begin{enumerate}
338+
\item $$\text{det}A=\answer{-4}$$
339+
\item Let $A_1$ be a matrix obtained from $A$ by switching the first and the second row of $A$.
340+
$$\text{det}A_1=\answer{4}$$
341+
What do you observe?
348342

349-
\begin{problem}\label{prob:matrixtimesconst}
350-
Let $B'$ be a matrix obtained from $B$ of Problem \ref{prob:2x2det2} by multiplying $B$ by $2$. Compute the determinant of $B'$. What do you observe?
351-
\end{problem}
343+
\item Let $A_2$ be a matrix obtained from $A$ by multiplying the bottom row by $-3$.
352344

353-
\begin{problem}\label{prob:matrixtimesconstant2x2proof}
354-
Make a conjecture about what happens to the determinant of a matrix if the matrix is multiplied by a constant. Prove your conjecture for a $2\times 2$ matrix.
355-
\end{problem}
345+
$$\text{det}A_2=\answer{12}$$
346+
What do you observe?
356347

357-
\begin{problem}\label{prob:scalarmultofrow}
358-
Let $B'$ be a matrix obtained from $B$ of Problem \ref{prob:2x2det2} by adding twice the third row to the first. Compute the determinant of $B'$. What do you observe?
359-
\end{problem}
348+
\item Let $A_3$ be a matrix obtained from $A$ by multiplying $A$ by $2$.
349+
350+
$$\text{det}A_3=\answer{-32}$$
351+
What do you observe? Relate your observations to what you found in the previous part.
360352

361-
\begin{problem}\label{prob:scalarmultofrow2x2}
362-
Make a conjecture about what happens to the determinant of a matrix if a multiple of one row is added to another row. Prove your conjecture for a $2\times 2$ matrix.
353+
\item Let $A_4$ be a matrix obtained from $A$ by adding twice the third row to the first.
354+
$$\text{det}A_4=\answer{-4}$$
355+
356+
What do you observe?
357+
\end{enumerate}
363358
\end{problem}
364359

365360
\begin{problem}\label{prob:detsumsumdetquestion}

VEC-0080/main.tex

Lines changed: 53 additions & 50 deletions
Original file line numberDiff line numberDiff line change
@@ -180,7 +180,7 @@ \subsection*{Properties of the Cross Product}
180180
\begin{proof}
181181
The proof is left to the reader. (See Practice Problem \ref{prob:corssuvnegcrossvu})
182182
\end{proof}
183-
The next theorem lists two additional properties of the cross product. Proofs of these properties are routine and are left to the reader. (See Practice Problems \ref{prob:scalarassocofcrossprod} and \ref{prob:distofrossprod})
183+
The next theorem lists two additional properties of the cross product. Proofs of these properties are routine and are left to the reader. %(See Practice Problems \ref{prob:scalarassocofcrossprod} and \ref{prob:distofrossprod})
184184

185185
\begin{theorem}\label{th:crossproductproperties}
186186
Let $\vec{u}$, $\vec{v}$ and $\vec{w}$ be vectors in $\mathbb{R}^3$, and $k$ be a scalar, then\\
@@ -237,7 +237,7 @@ \subsubsection*{Cross Product and the Angle between Vectors}
237237
Let $\vec{u}$ and $\vec{v}$ be vectors in $\RR^3$. Then
238238
$$\norm{\vec{u}\times\vec{v}}^2=\norm{\vec{u}}^2\norm{\vec{v}}^2-(\vec{u}\dotp\vec{v})^2$$
239239
\end{lemma}
240-
\begin{proof} The proof is left to the reader. (See Practice Problem \ref{prob:corssprodmagnitude})
240+
\begin{proof} The proof is left to the reader. %(See Practice Problem \ref{prob:corssprodmagnitude})
241241
\end{proof}
242242

243243
The following theorem establishes a relationship between the magnitude of the cross product, the magnitudes of the two vectors involved in the cross product and the angle between the two vectors. It is important to note that the identity in this theorem involves the magnitude of the cross product, not the cross product itself.
@@ -261,76 +261,79 @@ \subsubsection*{Cross Product and the Angle between Vectors}
261261

262262

263263
\section*{Practice Problems}
264-
\begin{problem}\label{prob:crossik}
265-
$\vec{i}\times\vec{k}=$
266-
\begin{multipleChoice}\choice{$\vec{j}$}
267-
\choice[correct]{$-\vec{j}$ }
268-
\choice{neither}
269-
\end{multipleChoice}
270-
\end{problem}
264+
% \begin{problem}\label{prob:crossik}
265+
% $\vec{i}\times\vec{k}=$
266+
% \begin{multipleChoice}\choice{$\vec{j}$}
267+
% \choice[correct]{$-\vec{j}$ }
268+
% \choice{neither}
269+
% \end{multipleChoice}
270+
% \end{problem}
271271

272-
\begin{problem}\label{prob:crosski}
273-
$\vec{k}\times\vec{i}=$
274-
\begin{multipleChoice}\choice[correct]{$\vec{j}$}
275-
\choice{$-\vec{j}$ }
276-
\choice{neither}
277-
\end{multipleChoice}
278-
\end{problem}
272+
% \begin{problem}\label{prob:crosski}
273+
% $\vec{k}\times\vec{i}=$
274+
% \begin{multipleChoice}\choice[correct]{$\vec{j}$}
275+
% \choice{$-\vec{j}$ }
276+
% \choice{neither}
277+
% \end{multipleChoice}
278+
% \end{problem}
279279

280-
\emph{Problems \ref{prob:crossuv1}-\ref{prob:crossuv2}}
281280

282-
Find the cross product $\vec{u}\times\vec{v}$, and verify that $\vec{u}\times\vec{v}$ is orthogonal to both $\vec{u}$ and $\vec{v}$.
283281

284-
\begin{problem}\label{prob:crossuv1}
282+
\begin{problem}\label{prob:crossuv1} Find the cross product $\vec{u}\times\vec{v}$, and verify that $\vec{u}\times\vec{v}$ is orthogonal to both $\vec{u}$ and $\vec{v}$.
285283
$\vec{u}=\begin{bmatrix}2\\-1\\4\end{bmatrix}$, $\vec{v}=\begin{bmatrix}0\\3\\1\end{bmatrix}$.
286284

287285
Answer:
288286
$$\vec{u}\times\vec{v}=\begin{bmatrix}\answer{-13}\\\answer{-2}\\\answer{6}\end{bmatrix}$$
289287
\end{problem}
290288

291-
\begin{problem}\label{prob:crossuv2}
292-
$\vec{u}=\begin{bmatrix}-1\\5\\-3\end{bmatrix}$, $\vec{v}=\begin{bmatrix}2\\-1\\-4\end{bmatrix}$.
289+
% \begin{problem}\label{prob:crossuv2}
290+
% $\vec{u}=\begin{bmatrix}-1\\5\\-3\end{bmatrix}$, $\vec{v}=\begin{bmatrix}2\\-1\\-4\end{bmatrix}$.
293291

294-
Answer:
295-
$$\vec{u}\times\vec{v}=\begin{bmatrix}\answer{-23}\\\answer{-10}\\\answer{-9}\end{bmatrix}$$
296-
\end{problem}
292+
% Answer:
293+
% $$\vec{u}\times\vec{v}=\begin{bmatrix}\answer{-23}\\\answer{-10}\\\answer{-9}\end{bmatrix}$$
294+
% \end{problem}
297295

298-
\begin{problem}\label{prob:corssuvnegcrossvu}
299-
Prove Theorem \ref{th:corssuvnegcrossvu}.
300-
\end{problem}
296+
% \begin{problem}\label{prob:corssuvnegcrossvu}
297+
% Prove Theorem \ref{th:corssuvnegcrossvu}.
298+
% \end{problem}
301299

302-
\begin{problem}\label{prob:scalarassocofcrossprod}
303-
Prove Theorem \ref{th:crossproductproperties}\ref{item:scalarassocofcrossprod} in two different ways:
304-
\begin{enumerate}
305-
\item By direct computation.
306-
\item (Optional) By using Theorem \ref{th:elemrowopsanddet}\ref{item:rowconstantmultanddet}.
307-
\end{enumerate}
308-
\end{problem}
300+
% \begin{problem}\label{prob:scalarassocofcrossprod}
301+
% Prove Theorem \ref{th:crossproductproperties}\ref{item:scalarassocofcrossprod} in two different ways:
302+
% \begin{enumerate}
303+
% \item By direct computation.
304+
% \item (Optional) By using Theorem \ref{th:elemrowopsanddet}\ref{item:rowconstantmultanddet}.
305+
% \end{enumerate}
306+
% \end{problem}
309307

310-
\begin{problem}\label{prob:distofrossprod}
311-
Prove Theorem \ref{th:crossproductproperties}\ref{item:distofrossprod}.
308+
\begin{problem}
309+
Let $\vec{u}$ and $\vec{v}$ be vectors in $\RR^3$, prove that
310+
$$\vec{u}\times\vec{v}=-(\vec{v}\times\vec{u})$$
312311
\end{problem}
313312

313+
% \begin{problem}\label{prob:distofrossprod}
314+
% Prove Theorem \ref{th:crossproductproperties}\ref{item:distofrossprod}.
315+
% \end{problem}
316+
314317
\begin{problem}\label{prob:crossproductorthtouandv}
315-
Prove Theorem \ref{th:crossproductorthtouandv}.
318+
Let $\vec{u}$ and $\vec{v}$ be vectors of $\RR^3$. Prove that $\vec{u}\times\vec{v}$ is orthogonal to both $\vec{u}$ and $\vec{v}$. (Theorem \ref{th:crossproductorthtouandv})
316319
\end{problem}
317320

318321
\begin{problem}\label{prob:crossself}
319322
Prove that the cross product of any vector with itself is the zero vector.
320323
\end{problem}
321324

322-
\begin{problem}\label{prob:crossprodzero}
323-
Suppose that $\vec{u}$ is a non-zero vector. Let $\vec{v}=k\vec{u}$ for $k\neq 0$. Argue that $\vec{u}\times \vec{v}=\vec{0}$ in two different ways:
324-
\begin{enumerate}
325-
\item
326-
By using Theorem \ref{th:crossproductsin}.
327-
\item (Optional) By using Theorem \ref{th:detofsingularmatrix}.
328-
\end{enumerate}
329-
\end{problem}
330-
331-
\begin{problem}\label{prob:corssprodmagnitude} Prove the following identity for vectors $\vec{u}$ and $\vec{v}$ of $\RR^3$.
332-
$$\norm{\vec{u}\times\vec{v}}^2=\norm{\vec{u}}^2\norm{\vec{v}}^2-(\vec{u}\dotp\vec{v})^2$$
333-
(Lemma \ref{lemma:crossprodmagnitude})
334-
\end{problem}
325+
% \begin{problem}\label{prob:crossprodzero}
326+
% Suppose that $\vec{u}$ is a non-zero vector. Let $\vec{v}=k\vec{u}$ for $k\neq 0$. Argue that $\vec{u}\times \vec{v}=\vec{0}$ in two different ways:
327+
% \begin{enumerate}
328+
% \item
329+
% By using Theorem \ref{th:crossproductsin}.
330+
% \item (Optional) By using Theorem \ref{th:detofsingularmatrix}.
331+
% \end{enumerate}
332+
% \end{problem}
333+
334+
% \begin{problem}\label{prob:corssprodmagnitude} Prove the following identity for vectors $\vec{u}$ and $\vec{v}$ of $\RR^3$.
335+
% $$\norm{\vec{u}\times\vec{v}}^2=\norm{\vec{u}}^2\norm{\vec{v}}^2-(\vec{u}\dotp\vec{v})^2$$
336+
% (Lemma \ref{lemma:crossprodmagnitude})
337+
% \end{problem}
335338

336339
\end{document}

week10.tex

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
\documentclass{xourse}
2+
3+
\input{preamble.tex}
4+
5+
\title{Week 10}
6+
7+
\begin{document}
8+
\begin{abstract}
9+
\end{abstract}
10+
\maketitle
11+
12+
%\part{Week 10 assignments}
13+
\activity{DET-0010/main}
14+
\activity{VEC-0080/main}
15+
16+
\end{document}

0 commit comments

Comments
 (0)