Skip to content

Commit a8b4bfa

Browse files
committed
Update main.tex
1 parent 1e43e24 commit a8b4bfa

File tree

1 file changed

+40
-38
lines changed

1 file changed

+40
-38
lines changed

MAT-0060/main.tex

Lines changed: 40 additions & 38 deletions
Original file line numberDiff line numberDiff line change
@@ -179,53 +179,55 @@ \subsection*{Elementary Matrices and Nonsingular Matrices}
179179

180180
\section*{Practice Problems}
181181

182-
\emph{Problems \ref{prob:elemmatrices1}-\ref{prob:elemmatrices3}}
183182

184-
For each elementary matrix $E$ below, determine the elementary row operation that results from multiplying a $3\times n$ matrix $A$ by $E$ on the left. Write down $E^{-1}$ without going through the row-reduction procedure.
183+
\begin{problem}\label{prob:elemmatrices1}
184+
Determine the elementary row operation that results from multiplying some $3\times n$ matrix $A$ by $E$ on the left. Write down $E^{-1}$ without going through the row-reduction procedure.
185185
(Hint: Think of an elementary row operation that would undo the row operation caused by $E$.)
186186

187-
188-
\begin{problem}\label{prob:elemmatrices1}
189187
$$E=\begin{bmatrix}0&1&0\\1&0&0\\0&0&1\end{bmatrix}$$
190188
Answer:
191189
$$E^{-1}=\begin{bmatrix}\answer{0}&\answer{1}&\answer{0}\\\answer{1}&\answer{0}&\answer{0}\\\answer{0}&\answer{0}&\answer{1}\end{bmatrix}$$
192190
\end{problem}
193191

194192
\begin{problem}\label{prob:elemmatrices2}
193+
Determine the elementary row operation that results from multiplying some $3\times n$ matrix $A$ by $E$ on the left. Write down $E^{-1}$ without going through the row-reduction procedure.
194+
(Hint: Think of an elementary row operation that would undo the row operation caused by $E$.)
195195
$$E=\begin{bmatrix}1&0&0\\0&1&0\\0&0&5\end{bmatrix}$$
196196
Answer:
197197
$$E^{-1}=\begin{bmatrix}\answer{1}&\answer{0}&\answer{0}\\\answer{0}&\answer{1}&\answer{0}\\\answer{0}&\answer{0}&\answer{1/5}\end{bmatrix}$$
198198
\end{problem}
199199

200200
\begin{problem}\label{prob:elemmatrices3}
201+
Determine the elementary row operation that results from multiplying some $3\times n$ matrix $A$ by $E$ on the left. Write down $E^{-1}$ without going through the row-reduction procedure.
202+
(Hint: Think of an elementary row operation that would undo the row operation caused by $E$.)
201203
$$E=\begin{bmatrix}1&0&0\\0&1&0\\0&4&1\end{bmatrix}$$
202204
Answer:
203205
$$E^{-1}=\begin{bmatrix}\answer{1}&\answer{0}&\answer{0}\\\answer{0}&\answer{1}&\answer{0}\\\answer{0}&\answer{-4}&\answer{1}\end{bmatrix}$$
204206
\end{problem}
205207

206208

207-
\begin{problem}\label{prob:elem_mat_inv}
208-
Find the inverse of each of the following elementary matrices from Explorations \ref{init:elementarymat2}, \ref{init:elementarymat1} and \ref{init:elementarymat3}.
209-
$$
210-
B = \begin{bmatrix}
211-
1&0&0\\0&5&0\\0&0&1
212-
\end{bmatrix}\quad
213-
C = \begin{bmatrix}
214-
1&0&0\\0&1&0\\0&0&-2
215-
\end{bmatrix}
216-
\quad
217-
D = \begin{bmatrix}
218-
1&0&1\\0&1&0\\0&0&1
219-
\end{bmatrix}\quad
220-
G = \begin{bmatrix}
221-
0&0&1\\0&1&0\\1&0&0
222-
\end{bmatrix}
223-
$$
224-
\end{problem}
225-
226-
\begin{problem}\label{prob:proofofelemmatricesinvert}
227-
Finish the proof of Theorem \ref{th:elemmatricesinvertible}.
228-
\end{problem}
209+
% \begin{problem}\label{prob:elem_mat_inv}
210+
% Find the inverse of each of the following elementary matrices from Explorations \ref{init:elementarymat2}, \ref{init:elementarymat1} and \ref{init:elementarymat3}.
211+
% $$
212+
% B = \begin{bmatrix}
213+
% 1&0&0\\0&5&0\\0&0&1
214+
% \end{bmatrix}\quad
215+
% C = \begin{bmatrix}
216+
% 1&0&0\\0&1&0\\0&0&-2
217+
% \end{bmatrix}
218+
% \quad
219+
% D = \begin{bmatrix}
220+
% 1&0&1\\0&1&0\\0&0&1
221+
% \end{bmatrix}\quad
222+
% G = \begin{bmatrix}
223+
% 0&0&1\\0&1&0\\1&0&0
224+
% \end{bmatrix}
225+
% $$
226+
% \end{problem}
227+
228+
% \begin{problem}\label{prob:proofofelemmatricesinvert}
229+
% Finish the proof of Theorem \ref{th:elemmatricesinvertible}.
230+
% \end{problem}
229231

230232
\begin{problem}\label{prob:prodelemmatrices}
231233
Express $A$ as a product of elementary matrices.
@@ -236,18 +238,18 @@ \section*{Practice Problems}
236238
Is this representation unique? Prove your claim.
237239
\end{problem}
238240

239-
\begin{problem}\label{prob:explorationelemmat} In Explorations \ref{init:elementarymat2}, \ref{init:elementarymat1} and \ref{init:elementarymat3} we performed elementary row operations on $A$ by multiplying $A$ by elementary matrices $B, C, D, F, G$ on the left. Compute $AB, AC, AD, AF$ and $AG$. Summarize your findings.
240-
241-
Answer:
242-
$$AB=\begin{bmatrix}\answer{1} & \answer{10} & \answer{3} \\ \answer{4} & \answer{25} & \answer{6}\\ \answer{7} & \answer{40} & \answer{9}\end{bmatrix}
243-
\quad
244-
AC=\begin{bmatrix}\answer{1} & \answer{2} & \answer{-6} \\ \answer{4} & \answer{5} & \answer{-12}\\ \answer{7} & \answer{8} & \answer{-18}\end{bmatrix}$$
245-
$$AD=\begin{bmatrix}\answer{1} & \answer{2} & \answer{4} \\ \answer{4} & \answer{5} & \answer{10}\\ \answer{7} & \answer{8} & \answer{16}\end{bmatrix}
246-
\quad
247-
AF=\begin{bmatrix}\answer{-3} & \answer{2} & \answer{3} \\ \answer{-6} & \answer{5} & \answer{6}\\ \answer{-9} & \answer{8} & \answer{9}\end{bmatrix}$$
248-
$$AG=\begin{bmatrix}\answer{3} & \answer{2} & \answer{1} \\ \answer{6} & \answer{5} & \answer{4}\\ \answer{9} & \answer{8} & \answer{7}\end{bmatrix}
249-
$$
250-
\end{problem}
241+
% \begin{problem}\label{prob:explorationelemmat} In Explorations \ref{init:elementarymat2}, \ref{init:elementarymat1} and \ref{init:elementarymat3} we performed elementary row operations on $A$ by multiplying $A$ by elementary matrices $B, C, D, F, G$ on the left. Compute $AB, AC, AD, AF$ and $AG$. Summarize your findings.
242+
243+
% Answer:
244+
% $$AB=\begin{bmatrix}\answer{1} & \answer{10} & \answer{3} \\ \answer{4} & \answer{25} & \answer{6}\\ \answer{7} & \answer{40} & \answer{9}\end{bmatrix}
245+
% \quad
246+
% AC=\begin{bmatrix}\answer{1} & \answer{2} & \answer{-6} \\ \answer{4} & \answer{5} & \answer{-12}\\ \answer{7} & \answer{8} & \answer{-18}\end{bmatrix}$$
247+
% $$AD=\begin{bmatrix}\answer{1} & \answer{2} & \answer{4} \\ \answer{4} & \answer{5} & \answer{10}\\ \answer{7} & \answer{8} & \answer{16}\end{bmatrix}
248+
% \quad
249+
% AF=\begin{bmatrix}\answer{-3} & \answer{2} & \answer{3} \\ \answer{-6} & \answer{5} & \answer{6}\\ \answer{-9} & \answer{8} & \answer{9}\end{bmatrix}$$
250+
% $$AG=\begin{bmatrix}\answer{3} & \answer{2} & \answer{1} \\ \answer{6} & \answer{5} & \answer{4}\\ \answer{9} & \answer{8} & \answer{7}\end{bmatrix}
251+
% $$
252+
% \end{problem}
251253

252254

253255
\begin{problem}\label{prob:expressasprodelemmat} If possible, express

0 commit comments

Comments
 (0)