Skip to content

Commit f996819

Browse files
committed
week 12
1 parent 9e7d6cf commit f996819

File tree

2 files changed

+84
-48
lines changed

2 files changed

+84
-48
lines changed

EIG-0020/main.tex

Lines changed: 67 additions & 48 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
\section*{The Characteristic Equation}
1515
\end{onlineOnly}
1616

17-
Let $A$ be an $n \times n$ matrix. In \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/EIG-0010/main}{Describing Eigenvalues and Eigenvectors Algebraically and Geometrically} we learned that the eigenvectors and eigenvalues of $A$ are vectors $\vec{x}$ and scalars $\lambda$ that satisfy the equation
17+
Let $A$ be an $n \times n$ matrix. In the previous section we learned that the eigenvectors and eigenvalues of $A$ are vectors $\vec{x}$ and scalars $\lambda$ that satisfy the equation
1818
\begin{align}\label{def:eigen} A \vec{x} = \lambda \vec{x}\end{align}
1919
We listed a few reasons why we are interested in finding eigenvalues and eigenvectors, but we did not give any process for finding them. In this section we will focus on a process which can be used for small matrices. For larger matrices, the best methods we have are iterative methods, and we will explore some of these in \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/EIG-0070/main}{The Power Method and the Dominant Eigenvalue}.
2020

@@ -29,7 +29,7 @@ \section*{The Characteristic Equation}
2929
A\vec{x}-\lambda I\vec{x} &= \vec{0} \\
3030
(A-\lambda I)\vec{x} &= \vec{0}
3131
\end{align*}
32-
The middle step was necessary before factoring because \wordChoice{\choice[correct]{we cannot subtract a $1 \times 1$ scalar $\lambda$ from an $n \times n$ matrix $A$} \choice{$\lambda$ is a Greek letter}}.
32+
%The middle step was necessary before factoring because we cannot subtract a $1 \times 1$ scalar $\lambda$ from an $n \times n$ matrix $A$.
3333

3434
This shows that any eigenvector $\vec{x}$ of $A$ is in the \wordChoice{\choice{row space}\choice{column space}\choice[correct]{null space}} of the related matrix, $A-\lambda I$.
3535

@@ -79,12 +79,18 @@ \subsection*{Eigenvalues}
7979
&=-(\lambda-4)(\lambda-1)^2
8080
\end{align*}
8181
Matrix $C$ has eigenvalues $\lambda_1=1$ and $\lambda_2=4$.
82+
83+
\begin{remark}
84+
The factor $(\lambda-1)$ appears twice. This repeated factor gives rise to the eigenvalue $\lambda_1=1$. We say that the eigenvalue $\lambda_1=1$ has \dfn{algebraic multiplicity} $2$.
85+
\end{remark}
8286
\end{explanation}
8387
\end{example}
8488

85-
In Example \ref{ex:3x3eig}, the factor $(\lambda-1)$ appears twice. This repeated factor gives rise to the eigenvalue $\lambda_1=1$. We say that the eigenvalue $\lambda_1=1$ has \dfn{algebraic multiplicity} $2$.
89+
\begin{definition}\label{def:algMult}
90+
\dfn{Algebraic multiplicity} of an eigenvalue is its multiplicity as a root of the characteristic equation.
91+
\end{definition}
8692

87-
The three examples above are a bit contrived. It is not always possible to completely factor the characteristic polynomial using only real numbers. However, a fundamental fact from algebra is that every degree $n$ polynomial has $n$ roots (counting multiplicity) provided that we allow complex numbers. This is why sometimes eigenvalues and their corresponding eigenvectors involve complex numbers. The next example illustrates this point.
93+
It is not always possible to completely factor the characteristic polynomial using only real numbers. However, a fundamental fact from algebra is that every degree $n$ polynomial has $n$ roots (counting multiplicity) provided that we allow complex numbers. This is why sometimes eigenvalues and their corresponding eigenvectors involve complex numbers. The next example illustrates this point.
8894

8995
\begin{example}\label{ex:3x3_complex_eig}
9096
Let $D=\begin{bmatrix} 0&0&0\\ 0 &1&1\\ 0 & -1&1\end{bmatrix}$. Compute the eigenvalues of this matrix.
@@ -137,10 +143,10 @@ \subsection*{Eigenvectors}
137143
\begin{align}\label{eqn:nullspace}
138144
(A-\lambda I) \vec{x}=\vec{0}
139145
\end{align}
140-
For any given eigenvalue $\lambda$ there are infinitely many eigenvectors associated with it. In fact, the eigenvectors associated with $\lambda$ form a subspace of $\RR^n$.
146+
As we have seen in the previous section, a scalar multiple of an eigenvector is an eigenvector. So for any given eigenvalue $\lambda$ there are infinitely many eigenvectors associated with it. In fact, the eigenvectors associated with $\lambda$, together with the zero vector, form a subspace of $\RR^n$.
141147

142148
\begin{theorem}\label{th:eigenspace}
143-
Let $A$ be an $n\times n$ matrix and let $\lambda$ be an eigenvalue of $A$. Then the set of all eigenvectors associated with $\lambda$ is a subspace of $\RR^n$.
149+
Let $A$ be an $n\times n$ matrix and let $\lambda$ be an eigenvalue of $A$. Then the set of all eigenvectors associated with $\lambda$, together with the zero vector, is a subspace of $\RR^n$.
144150
\end{theorem}
145151
\begin{proof}
146152
See Practice Problems \ref{prob:eigenspace1} and \ref{prob:eigenspace2}.
@@ -149,10 +155,10 @@ \subsection*{Eigenvectors}
149155
This motivates the following definition.
150156

151157
\begin{definition}\label{def:eigspace}
152-
The set of all eigenvectors associated with a given eigenvalue of a matrix is known as the \dfn{eigenspace} associated with that eigenvalue.
158+
The set of all eigenvectors associated with a given eigenvalue of a matrix, together with the zero vector, is known as the \dfn{eigenspace} associated with that eigenvalue.
153159
\end{definition}
154160

155-
So given an eigenvalue $\lambda$, there is an associated eigenspace $\mathcal{S}$, and our goal is to find a basis of $\mathcal{S}$, for then any eigenvector $\vec{x}$ will be a linear combination of the vectors in that basis. Moreover, we are trying to find a basis for the set of vectors that satisfy Equation \ref{eqn:nullspace}, which means we seek a basis for $\mbox{null}(A-\lambda I)$. We have already learned how to compute a basis of a null space - see \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/VSP-0040/main}{Subspaces Associated with Matrices}.
161+
Given an eigenvalue $\lambda$, there is an associated eigenspace $\mathcal{S}_{\lambda}$. Our goal is to find a basis of $\mathcal{S}_{\lambda}$. Then any eigenvector $\vec{x}$ associated with $\lambda$ will be a linear combination of the vectors in that basis. In seeking a basis for $\mathcal{S}_{\lambda}$, we are trying to find a basis for the set of vectors that satisfy $(A-\lambda I) \vec{x}=\vec{0}$, which means we seek a basis for $\mbox{null}(A-\lambda I)$. % We have already learned how to compute a basis of a null space - see \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/VSP-0040/main}{Subspaces Associated with Matrices}.
156162

157163
Let's return to the examples we did in the first part of this section.
158164

@@ -172,6 +178,14 @@ \subsection*{Eigenvectors}
172178
\begin{align*}\mbox{rref}(A-3I)=\mbox{rref}\left(\begin{bmatrix}-1&1\\1&-1\end{bmatrix}\right)&=\begin{bmatrix}1&-1\\0&0\end{bmatrix},
173179
\end{align*}
174180
Vectors in the null space have the form $\begin{bmatrix}1\\1\end{bmatrix}t$ This means that $\left\{\begin{bmatrix}1\\1\end{bmatrix}\right\}$ is one possible basis for the eigenspace $\mathcal{S}_3$.
181+
182+
These computations reinforce the geometric insights into this problem that we gained in the previous section.
183+
184+
\begin{onlineOnly}
185+
\begin{center}
186+
\geogebra{yr2btbqj}{800}{600}
187+
\end{center}
188+
\end{onlineOnly}
175189
\end{explanation}
176190
\end{example}
177191

@@ -185,14 +199,10 @@ \subsection*{Eigenvectors}
185199
From this we see that an eigenvector in $\mathcal{S}_0$ has the form $\begin{bmatrix}-1/2\\1\end{bmatrix}t$. %$\begin{bmatrix}x_1\\x_2\end{bmatrix}$ in $\mathcal{S}_0$ satisfies $x_1+\frac{1}{2} x_2=0$, so that $2x_1=-x_2$.
186200
This means that $\left\{\begin{bmatrix}-1/2\\1\end{bmatrix}\right\}$ is one possible basis for the eigenspace $\mathcal{S}_0$. By letting $t=-2$, we obtain an arguably nicer-looking basis: $\left\{\begin{bmatrix}1\\-2\end{bmatrix}\right\}$.
187201

188-
See if you can compute a basis for $\mathcal{S}_4$.
189202

190-
Click on the arrow if you need help.
191-
192-
\begin{expandable}{}{}
193203
To compute a basis for $\mathcal{S}_4$, the subspace of all eigenvectors associated to the eigenvalue $\lambda_2=4$, we compute:
194204
$$\mbox{rref}(B-4I)=\mbox{rref}\left(\begin{bmatrix}-2&1\\4&-2\end{bmatrix}\right)=\begin{bmatrix}1&-\frac{1}{2}\\0&0\end{bmatrix}$$
195-
\end{expandable}
205+
196206

197207
From this we find that $\left\{\begin{bmatrix}1\\\answer{2}\end{bmatrix}\right\}$ is one possible basis for the eigenspace $\mathcal{S}_4$.
198208
\end{explanation}
@@ -216,9 +226,18 @@ \subsection*{Eigenvectors}
216226
\end{align*}
217227
This time there is one free variable. %Setting $x_3=t$, we also get $x_1=t$ and $x_2=t$. From this we see
218228
The eigenvectors in $\mathcal{S}_4$ have the form $\begin{bmatrix}t\\t\\t\end{bmatrix}$, so a possible basis for the eigenspace $\mathcal{S}_4$ is given by $\left\{\begin{bmatrix}1\\1\\1\end{bmatrix}\right\}$.
229+
230+
\begin{remark}
231+
Recall that $\lambda_1=1$ has algebraic multiplicity $2$. Note that $\text{dim}(\mathcal{S}_{\lambda_1})=2$. We say that $\lambda_1$ has geometric multiplicity $2$. We have to be careful, however, not to assume that geometric and algebraic multiplicity are always the same. We will revisit this issue later in the text.
232+
\end{remark}
233+
219234
\end{explanation}
220235
\end{example}
221236

237+
\begin{definition}\label{def:geomMult}
238+
The \dfn{geometric multiplicity} of an eigenvalue is the dimension of the eigenspace corresponding to it.
239+
\end{definition}
240+
222241
\begin{example}\label{ex:3x3_complex_ev} (Finding eigenvectors for Example \ref{ex:3x3_complex_eig})
223242
We know from Example \ref{ex:3x3_complex_eig} that $D=\begin{bmatrix} 0&0&0\\ 0 &1&1\\ 0 & -1&1\end{bmatrix}$ has eigenvalues $\lambda=0$, $\lambda_1=1+i$, and $\lambda_2=1-i$. Compute a basis for the eigenspace associated with each eigenvalue.
224243
\begin{explanation}
@@ -243,39 +262,22 @@ \subsection*{Eigenvectors}
243262
\end{theorem}
244263

245264
\begin{proof}
246-
A square matrix $A$ is singular if and only if $\det{A}=0$.(see \ref{th:detofsingularmatrix}). But $\det{A}=0$ if and only if $\det{A-0I}=0$, which is true if and only if zero is an eigenvalue of $A$.
265+
A square matrix $A$ is singular if and only if $\det{A}=0$. But $\det{A}=0$ if and only if $\det{A-0I}=0$, which is true if and only if zero is an eigenvalue of $A$.
247266
\end{proof}
248267

249268
\section*{Practice Problems}
250269

251-
\emph{Problems \ref{prob:eigenspace1}-\ref{prob:eigenspace2}}
252-
253-
In this exercise we will prove that the eigenvectors associated with an eigenvalue $\lambda$ of an $n \times n$ matrix $A$ form a subspace of $\RR^n$.
254-
255-
\begin{problem}\label{prob:eigenspace1}
256-
Let $\vec{x}$ and $\vec{y}$ be eigenvectors of $A$ associated with $\lambda$. Show that $\vec{x}+\vec{y}$ is also an eigenvector of $A$ associated with $\lambda$. (This shows that the set of eigenvectors of $A$ associated with $\lambda$ is closed under addition).
257-
\end{problem}
258-
259-
\begin{problem}\label{prob:eigenspace2}
260-
Show that the set of eigenvectors of $A$ associated with $\lambda$ is closed under scalar multiplication.
261-
\end{problem}
262-
263-
264-
\emph{Problems \ref{prob:eigenspace3}-\ref{prob:eigenspace4}}
265-
266-
Compute the eigenvalues of the given matrix and find the corresponding eigenspaces.
267-
268-
\begin{problem}\label{prob:eigenspace3}
269-
$$\begin{bmatrix}4&1\\8&-3\end{bmatrix}$$
270+
\begin{problem}\label{prob:eigenspace3} Compute the eigenvalues of $A$, and find the corresponding eigenspaces.
271+
$$A=\begin{bmatrix}4&1\\8&-3\end{bmatrix}$$
270272
Answer:
271273
(List the eigenvalues in an increasing order.)
272274
$$\lambda_1=\answer{-4},\quad\lambda_2=\answer{5}$$
273275

274276
A basis for $\mathcal{S}_{\lambda_1}$ is $\left\{\begin{bmatrix}\answer{-1/8}\\1\end{bmatrix}\right\}$. A basis for $\mathcal{S}_{\lambda_2}$ is $\left\{\begin{bmatrix}\answer{1}\\1\end{bmatrix}\right\}$.
275277
\end{problem}
276278

277-
\begin{problem}\label{prob:eigenspace4}
278-
$$\begin{bmatrix}1&-2\\2&1\end{bmatrix}$$
279+
\begin{problem}\label{prob:eigenspace4}Compute the eigenvalues of $A$, and find the corresponding eigenspaces.
280+
$$A=\begin{bmatrix}1&-2\\2&1\end{bmatrix}$$
279281
Answer:
280282

281283
$$\lambda_1=\answer{1}+\answer{2}i,\quad\lambda_2=\answer{1}-\answer{2}i$$
@@ -288,12 +290,10 @@ \section*{Practice Problems}
288290
Let $T=\begin{bmatrix} 1 & 2 & 3\\ 0 & 5 & 6\\ 0 & 0 & 9\end{bmatrix}$. Compute a basis for each of the eigenspaces of this matrix, $\mathcal{S}_1$, $\mathcal{S}_5$, and $\mathcal{S}_9$.
289291
\end{problem}
290292

291-
\emph{Problems \ref{prob:3x3fromKuttler1}-\ref{prob:3x3fromKuttler2}}
292-
293-
Let $A=\begin{bmatrix} 9 & 2 & 8\\ 2 & -6 & -2\\ -8 & 2 & -5\end{bmatrix}$.
293+
\begin{problem}\label{prob:3x3fromKuttler1} Let $$A=\begin{bmatrix} 9 & 2 & 8\\ 2 & -6 & -2\\ -8 & 2 & -5\end{bmatrix}$$
294294

295-
\begin{problem}\label{prob:3x3fromKuttler1}
296-
Compute the eigenvalues of this matrix.
295+
\begin{question}
296+
Compute the eigenvalues of $A$.
297297
\begin{hint}
298298
One of the eigenvalues of $A$ is -3.
299299
\end{hint}
@@ -302,16 +302,18 @@ \section*{Practice Problems}
302302

303303
(List your answers in an increasing order.)
304304
$$\lambda_1 = \answer{-3},\quad \lambda_2 = \answer{-1},\quad \lambda_3 = \answer{2}$$
305-
\end{problem}
305+
\end{question}
306306

307-
\begin{problem}\label{prob:3x3fromKuttler2}
308-
Compute a basis for each of the eigenspaces of this matrix, $\mathcal{S}_{\lambda_1}$, $\mathcal{S}_{\lambda_2}$, and $\mathcal{S}_{\lambda_3}$.
307+
\begin{question}
308+
309+
Compute a basis for each of the eigenspaces of $A$, $\mathcal{S}_{\lambda_1}$, $\mathcal{S}_{\lambda_2}$, and $\mathcal{S}_{\lambda_3}$.
309310

310311
Answer:
311312
A basis for $\mathcal{S}_{\lambda_1}$ is $\left\{\begin{bmatrix}1\\\answer{2}\\\answer{-2}\end{bmatrix}\right\}$,
312313
a basis for $\mathcal{S}_{\lambda_2}$ is $\left\{\begin{bmatrix}-2\\\answer{-2}\\\answer{3}\end{bmatrix}\right\}$,
313314

314315
and a basis for $\mathcal{S}_{\lambda_3}$ is $\left\{\begin{bmatrix}2\\\answer{1}\\\answer{-2}\end{bmatrix}\right\}$.
316+
\end{question}
315317
\end{problem}
316318

317319

@@ -321,12 +323,17 @@ \section*{Practice Problems}
321323

322324

323325
\begin{problem}\label{prob:eigtri}
324-
Prove Theorem \ref{th:eigtri}. (HINT: Proceed by induction on the dimension n. For the inductive step, compute $\det(A-\lambda I)$ by expanding along the first column (or row) if $T$ is upper (lower) triangular.)
326+
Prove Theorem \ref{th:eigtri}.
327+
\begin{hint}
328+
What do we know about the determinant of a triangular matrix?
329+
\end{hint}
330+
331+
%(HINT: Proceed by induction on the dimension n. For the inductive step, compute $\det(A-\lambda I)$ by expanding along the first column (or row) if $T$ is upper (lower) triangular.)
325332
\end{problem}
326333

327-
\emph{Problems \ref{prob:eigvectorstransfr2_1}-\ref{prob:eigvectorstransfr2_3}}
334+
% \emph{Problems \ref{prob:eigvectorstransfr2_1}-\ref{prob:eigvectorstransfr2_3}}
328335

329-
The following set of problems deals with geometric interpretation of eigenvalues and eigenvectors, as well as linear transformations of the plane. Please use \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/EIG-0010/main}{Describing Eigenvalues and Eigenvectors Algebraically and Geometrically} and \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/LTR-0070/main}{Geometric Transformations of the Plane} for reference.
336+
% The following set of problems deals with geometric interpretation of eigenvalues and eigenvectors, as well as linear transformations of the plane. Please use \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/EIG-0010/main}{Describing Eigenvalues and Eigenvectors Algebraically and Geometrically} and \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/LTR-0070/main}{Geometric Transformations of the Plane} for reference.
330337

331338
\begin{problem}\label{prob:eigvectorstransfr2_1}
332339
Recall that a vertical stretch/compression of the plane is a linear transformation whose standard matrix is $$M_v=\begin{bmatrix}1&0\\0&k\end{bmatrix}$$
@@ -348,14 +355,17 @@ \section*{Practice Problems}
348355

349356
Answer: A basis for $\mathcal{S}$ is $\left\{\begin{bmatrix}1\\\answer{0}\end{bmatrix}\right\}$
350357

351-
Sketch several vectors in the eigenspace and use geometry to explain why the eigenvectors you sketched make sense.
358+
What is the algebraic multiplicity of $\lambda$? $\answer{2}$
359+
360+
What is the geometric multiplicity of $\lambda$? $\answer{1}$
361+
352362
\end{problem}
353363

354364
\begin{problem}\label{prob:rotmatrixrealeig2}
355365
Recall that a counterclockwise rotation of the plane through angle $\theta$ is a linear transformation whose standard matrix is $$M_{\theta}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}$$
356366
Verify that the eigenvalues of $M_{\theta}$ are
357367
$$\lambda=\cos\theta\pm\sqrt{\cos^2\theta-1}$$
358-
Explain why $\lambda$ is a real number if and only if $\theta$ is a multiple of $\pi$. (Compare this to Practice Problem \ref{prob:rotmatrixrealeig1} of \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/EIG-0010/main}{Describing Eigenvalues and Eigenvectors Algebraically and Geometrically}.)
368+
Use algebra, then use geometry to explain why $\lambda$ is a real number if and only if $\theta$ is a multiple of $\pi$.
359369

360370
Suppose $\theta$ is a muliple of $\pi$. Then the eigenspaces corresponding to the two eigenvalues are the same. Which of the following describes the eigenspace?
361371
\begin{multipleChoice}
@@ -401,6 +411,15 @@ \section*{Practice Problems}
401411

402412
\end{problem}
403413

414+
\begin{problem}\label{prob:eigenspace1}
415+
In this exercise we will prove that the eigenvectors associated with an eigenvalue $\lambda$ of an $n \times n$ matrix $A$, together with the zero vector, form a subspace of $\RR^n$. To do this, follow the outline below.
416+
417+
\begin{enumerate}
418+
\item
419+
Let $\vec{x}$ and $\vec{y}$ be eigenvectors of $A$ associated with $\lambda$. Show that $\vec{x}+\vec{y}$ is also an eigenvector of $A$ associated with $\lambda$. (This shows that the set of eigenvectors of $A$ associated with $\lambda$ is closed under addition).
420+
\item Show that the set of eigenvectors of $A$ associated with $\lambda$ is closed under scalar multiplication.
421+
\end{enumerate}
422+
\end{problem}
404423

405424
\section*{Exercise Source}
406425
Practice Problem \ref{prob:3x3fromKuttler1} is adopted from Problem 7.1.11 of Ken Kuttler's \href{https://open.umn.edu/opentextbooks/textbooks/a-first-course-in-linear-algebra-2017}{\it A First Course in Linear Algebra}. (CC-BY)

week12.tex

Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
\documentclass{xourse}
2+
3+
\input{preamble.tex}
4+
5+
\title{Week 12}
6+
7+
\begin{document}
8+
\begin{abstract}
9+
\end{abstract}
10+
\maketitle
11+
12+
%\part{Week 12 assignments}
13+
\activity{EIG-0020/main}
14+
\activity{EIG-0040/main}
15+
\activity{EIG-0050/main}
16+
17+
\end{document}

0 commit comments

Comments
 (0)