-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fix(oracle): use 512 bit multiplication
- Loading branch information
Showing
2 changed files
with
112 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -6,12 +6,14 @@ import {IOracle} from "../lib/morpho-blue/src/interfaces/IOracle.sol"; | |
import {AggregatorV3Interface, ChainlinkDataFeedLib} from "./libraries/ChainlinkDataFeedLib.sol"; | ||
import {IERC4626, VaultLib} from "./libraries/VaultLib.sol"; | ||
import {ErrorsLib} from "./libraries/ErrorsLib.sol"; | ||
import {FullMath} from "./libraries/FullMath.sol"; | ||
|
||
/// @title ChainlinkOracle | ||
/// @author Morpho Labs | ||
/// @custom:contact [email protected] | ||
/// @notice Morpho Blue oracle using Chainlink-compliant feeds. | ||
contract ChainlinkOracle is IOracle { | ||
using FullMath for uint256; | ||
using VaultLib for IERC4626; | ||
using ChainlinkDataFeedLib for AggregatorV3Interface; | ||
|
||
|
@@ -94,8 +96,8 @@ contract ChainlinkOracle is IOracle { | |
|
||
/// @inheritdoc IOracle | ||
function price() external view returns (uint256) { | ||
return ( | ||
VAULT.getAssets(VAULT_CONVERSION_SAMPLE) * BASE_FEED_1.getPrice() * BASE_FEED_2.getPrice() * SCALE_FACTOR | ||
) / (QUOTE_FEED_1.getPrice() * QUOTE_FEED_2.getPrice()); | ||
return (VAULT.getAssets(VAULT_CONVERSION_SAMPLE) * SCALE_FACTOR).mulDiv( | ||
BASE_FEED_1.getPrice() * BASE_FEED_2.getPrice(), QUOTE_FEED_1.getPrice() * QUOTE_FEED_2.getPrice() | ||
); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
// SPDX-License-Identifier: MIT | ||
pragma solidity ^0.8.0; | ||
|
||
/// @title Contains 512-bit math functions | ||
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of | ||
/// precision | ||
/// @dev From https://github.com/Uniswap/v3-core/blob/0.8/contracts/libraries/FullMath.sol. | ||
library FullMath { | ||
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or | ||
/// denominator == 0 | ||
/// @param a The multiplicand | ||
/// @param b The multiplier | ||
/// @param denominator The divisor | ||
/// @return result The 256-bit result | ||
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv | ||
function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) { | ||
unchecked { | ||
// 512-bit multiply [prod1 prod0] = a * b | ||
// Compute the product mod 2**256 and mod 2**256 - 1 | ||
// then use the Chinese Remainder Theorem to reconstruct | ||
// the 512 bit result. The result is stored in two 256 | ||
// variables such that product = prod1 * 2**256 + prod0 | ||
uint256 prod0; // Least significant 256 bits of the product | ||
uint256 prod1; // Most significant 256 bits of the product | ||
assembly { | ||
let mm := mulmod(a, b, not(0)) | ||
prod0 := mul(a, b) | ||
prod1 := sub(sub(mm, prod0), lt(mm, prod0)) | ||
} | ||
|
||
// Handle non-overflow cases, 256 by 256 division | ||
if (prod1 == 0) { | ||
require(denominator > 0); | ||
assembly { | ||
result := div(prod0, denominator) | ||
} | ||
return result; | ||
} | ||
|
||
// Make sure the result is less than 2**256. | ||
// Also prevents denominator == 0 | ||
require(denominator > prod1); | ||
|
||
/////////////////////////////////////////////// | ||
// 512 by 256 division. | ||
/////////////////////////////////////////////// | ||
|
||
// Make division exact by subtracting the remainder from [prod1 prod0] | ||
// Compute remainder using mulmod | ||
uint256 remainder; | ||
assembly { | ||
remainder := mulmod(a, b, denominator) | ||
} | ||
// Subtract 256 bit number from 512 bit number | ||
assembly { | ||
prod1 := sub(prod1, gt(remainder, prod0)) | ||
prod0 := sub(prod0, remainder) | ||
} | ||
|
||
// Factor powers of two out of denominator | ||
// Compute largest power of two divisor of denominator. | ||
// Always >= 1. | ||
uint256 twos = (0 - denominator) & denominator; | ||
// Divide denominator by power of two | ||
assembly { | ||
denominator := div(denominator, twos) | ||
} | ||
|
||
// Divide [prod1 prod0] by the factors of two | ||
assembly { | ||
prod0 := div(prod0, twos) | ||
} | ||
// Shift in bits from prod1 into prod0. For this we need | ||
// to flip `twos` such that it is 2**256 / twos. | ||
// If twos is zero, then it becomes one | ||
assembly { | ||
twos := add(div(sub(0, twos), twos), 1) | ||
} | ||
prod0 |= prod1 * twos; | ||
|
||
// Invert denominator mod 2**256 | ||
// Now that denominator is an odd number, it has an inverse | ||
// modulo 2**256 such that denominator * inv = 1 mod 2**256. | ||
// Compute the inverse by starting with a seed that is correct | ||
// correct for four bits. That is, denominator * inv = 1 mod 2**4 | ||
uint256 inv = (3 * denominator) ^ 2; | ||
// Now use Newton-Raphson iteration to improve the precision. | ||
// Thanks to Hensel's lifting lemma, this also works in modular | ||
// arithmetic, doubling the correct bits in each step. | ||
inv *= 2 - denominator * inv; // inverse mod 2**8 | ||
inv *= 2 - denominator * inv; // inverse mod 2**16 | ||
inv *= 2 - denominator * inv; // inverse mod 2**32 | ||
inv *= 2 - denominator * inv; // inverse mod 2**64 | ||
inv *= 2 - denominator * inv; // inverse mod 2**128 | ||
inv *= 2 - denominator * inv; // inverse mod 2**256 | ||
|
||
// Because the division is now exact we can divide by multiplying | ||
// with the modular inverse of denominator. This will give us the | ||
// correct result modulo 2**256. Since the precoditions guarantee | ||
// that the outcome is less than 2**256, this is the final result. | ||
// We don't need to compute the high bits of the result and prod1 | ||
// is no longer required. | ||
result = prod0 * inv; | ||
return result; | ||
} | ||
} | ||
} |