Skip to content

Commit

Permalink
Added some more exercises
Browse files Browse the repository at this point in the history
Signed-off-by: Marcello Seri <[email protected]>
  • Loading branch information
mseri committed Jan 3, 2021
1 parent 6d01a5e commit 9f11559
Show file tree
Hide file tree
Showing 3 changed files with 38 additions and 29 deletions.
34 changes: 16 additions & 18 deletions 6-differentiaforms.tex
Original file line number Diff line number Diff line change
Expand Up @@ -248,7 +248,7 @@ \section{The interior product}
\end{equation}
\end{enumerate}
\end{lemma}
\begin{exercise}
\begin{exercise}[\textit{[homework 4]}]
Prove the Lemma.
\end{exercise}

Expand Down Expand Up @@ -298,7 +298,7 @@ \section{Differential forms on manifolds}
F^*\left(\omega_J dx^J\right) = (\omega_{j_1,\ldots, j_k}\circ F) d(x^{j_1}\circ F)\wedge\cdots\wedge d(x^{j_k}\circ F).
\end{equation}
\end{theorem}
\begin{exercise}
\begin{exercise}%[\textit{[homework 4]}]
Prove the theorem.
\end{exercise}

Expand Down Expand Up @@ -350,7 +350,7 @@ \section{Differential forms on manifolds}
where $DF$ represents the Jacobian matrix of $F$ in these coordinates.
\end{proposition}

\begin{exercise}
\begin{exercise}\textit{[homework 4]}
Prove the Proposition~\ref{prop:wedgeToJDet}.\\
\textit{\small Hint: look at Theorem~\ref{thm:pullbacksdifferentialforms}.}
\end{exercise}
Expand Down Expand Up @@ -451,7 +451,12 @@ \section{Exterior derivative}
\end{align}
\end{proof}

In particular, this means that for any diffeomorphism $F:M\to N$ and $\omega\in\Omega^k(M)$, $F^*d\omega = d F^*\omega$.
\begin{exercise}\label{ex:smoothpushforward}
Let $F:M\to N$ be a smooth map between smooth manifolds and $\omega\in\Omega^k(N)$, then
\begin{equation}
F^* (d\omega) = d(F^* \omega).
\end{equation}
\end{exercise}

\begin{lemma}
The exterior derivative satisfies the following properties.
Expand All @@ -475,16 +480,9 @@ \section{Exterior derivative}
\end{align}
\end{proof}

\begin{exercise}\label{ex:smoothpushforward}
Let $F:M\to N$ be a smooth map between smooth manifolds and $\omega\in\Omega^k(N)$, then
\begin{equation}
F^* d\omega = d(F^* \omega).
\end{equation}
\end{exercise}

Let $N\subset M$ a submanifold and $i:N\hookrightarrow M$ the corresponding injection.
For $\omega\in\Omega^k(M)$, we call $i^*\omega \in \Omega^k(N)$ the restriction of $\omega$ to $N$.
The previous exercise, then, implies that restriction and exterior derivative commute, that is, $i^*d\omega = d(i^*\omega)$.
Exercise~\ref{ex:smoothpushforward}, then, implies that restriction and exterior derivative commute, that is, $i^*d\omega = d(i^*\omega)$.

\begin{example}[Exterior derivatives and vector calculus in $\R^3$]
Let $M=\R^3$. Any smooth $1$-form $\omega\in\Omega^1(\R^3)$ can be written as
Expand Down Expand Up @@ -517,9 +515,9 @@ \section{Exterior derivative}

Moreover, the interior multiplication yields another map $\beta: \fX(\R^3)\to\Omega^2(\R^3)$ defined by $\beta(X) = \iota_X (dx\wedge dy\wedge dz)$, which is linear over $C^\infty(\R^3)$ (why?) and, thus, corresponds to a smooth bundle homomorphism from $T\R^3$ to $\Lambda^2(\R^3)$ (why?).

In a similar fashion, we can also define a smooth bundle isomorphism $(\bigstar): C^\infty(\R^3) \to \Omega^3(\R^3)$ via
In a similar fashion, we can also define a smooth bundle isomorphism $\bigstar: C^\infty(\R^3) \to \Omega^3(\R^3)$ via
\begin{equation}
(\bigstar)(f) = f dx\wedge dy\wedge dz.
\bigstar(f) = f dx\wedge dy\wedge dz.
\end{equation}

If $f\in C^\infty(\R^3)$ and $v\in\cT_0^1(\R^3)$, we can use the exterior derivatives to observe that the following diagram commutes
Expand All @@ -528,7 +526,7 @@ \section{Exterior derivative}
C^\infty(\R^3) \arrow[d, "\id"] \arrow[r, "\nabla"] &
\fX(\R^3) \arrow[d, "{}^\flat"] \arrow[r, "\nabla\times"] &
\fX(\R^3) \arrow[d, "\beta"] \arrow[r, "\nabla\cdot"] &
C^\infty(\R^3) \arrow[d, "(\bigstar)"] \\
C^\infty(\R^3) \arrow[d, "\bigstar"] \\
\Omega^0(\R^3) \arrow[r, "d"] &
\Omega^1(\R^3) \arrow[r, "d"] &
\Omega^2(\R^3) \arrow[r, "d"] &
Expand All @@ -541,7 +539,7 @@ \section{Exterior derivative}
\end{example}

\begin{exercise}
Show that the diagram~\eqref{diag:comm:r3ops} commutes and use it to give a quick proof that $\nabla\times\circ \nabla \equiv 0$ and that $\nabla\cdot \circ \nabla\times \equiv 0$.
Show that the diagram~\eqref{diag:comm:r3ops} commutes and use it to give a quick proof that $(\nabla\times)\circ \nabla \equiv 0$ and that $(\nabla\cdot) \circ (\nabla\times) \equiv 0$.
For example,
\begin{equation}
df = \frac{\partial f}{\partial x^i} = (\nabla f)_i dx^i = (\nabla f)^\flat.
Expand All @@ -567,7 +565,7 @@ \section{Exterior derivative}
Show that $\omega := d\lambda$ is a symplectic form on $T^* M$, that is, every cotangent bundle is a symplectic manifold.
\end{enumerate}

For example, $\omega = \sum_{i=1}^n \alpha^i\wedge \alpha^{i+n}\in\Omega^2(\R^{2n})$ is a symplectic form and plays a central role in classical mechanics. There one usually calls $(\alpha^{n+1},\ldots,\alpha^{2n})$ the \emph{position coordinates} and $(\alpha^{1},\ldots,\alpha^{n})$ the \emph{momentum coordinates}.
For example, $\omega = \sum_{i=1}^n \alpha^i\wedge \alpha^{i+n}\in\Omega^2(\R^{2n})$ is a symplectic form and plays a central role in classical mechanics. There, one usually calls $(\alpha^{n+1},\ldots,\alpha^{2n})$ the \emph{position coordinates} and $(\alpha^{1},\ldots,\alpha^{n})$ the \emph{momentum coordinates}.
\begin{enumerate}
\item[c)] Show that for $n=2$, $\omega \wedge \omega = -2 \alpha^1\wedge\alpha^2\wedge\alpha^3\wedge\alpha^4$.

Expand Down Expand Up @@ -707,7 +705,7 @@ \section{De Rham cohomology and Poincar\'e lemma}
This is the statement of the so-called Poincar\'e lemma.
We are going to prove it in two slightly different flavours: its classical version and a slight generalization.

\begin{exercise}
\begin{exercise}[\textit{[homework 4]}]
Let $M=\R^2\setminus\{0\}$ and $\omega$ the one-form on $M$ from Example~\ref{ex:li} given by
\begin{equation}
\omega = \frac{xdy - ydx}{x^2+y^2}.
Expand Down
31 changes: 21 additions & 10 deletions 7-integration.tex
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ \section{Orientation}
\end{definition}

\begin{example}
If $e_i$ is the standard $i$th basis vector in $\R^n$, the standard orientation of $\R^n$ is given by declaring that $e_1\wedge\cdots e_n$ is a positive basis of $\Lambda^n(\R^n)$ and thus that $\{e_1,\ldots,e_n\}$ is a positive basis of $\R^n$.
If $e_i$ is the standard $i$th basis vector in $\R^n$, the standard orientation of $\R^n$ is given by declaring that $e_1\wedge\cdots\wedge e_n$ is a positive basis of $\Lambda^n(\R^n)$ and thus that $\{e_1,\ldots,e_n\}$ is a positive basis of $\R^n$.
\end{example}

The key in the preservation of orientation now resides only in the way different bases are transformed by $n$-forms, as the following lemma shows.
Expand Down Expand Up @@ -174,8 +174,19 @@ \section{Orientation}
\end{enumerate}
\end{exercise}

What about orientation on the boundaries?
\begin{exercise}
Let $f\in C^\infty(\R^{n+1})$ with $0$ as a regular value.
Show that $f^{-1}(0)$ is an orientable submanifold of $\R^{n+1}$.
%In particular, the unit $n$-sphere $\bS^n\subset\R^{n+1}$ is orientable.
\end{exercise}

\begin{exercise}[\textit{[homework 4]}]
Let $M$ be a smooth manifold without boundary and $\pi: TM \to M$ its tangent bundle.
Show that if $\{U,\phi\}$ is any atlas on $M$, then the corresponding\footnote{Remember Theorem~\ref{thm:tgbdlsmoothmfld}.} atlas on $TU$ is oriented.
This, in particular, proves that the total space $TM$ of the tangent bundle is always orientable, regardless of the orientability of $M$.
\end{exercise}

\newthought{What about orientation on the boundaries?}
Let's first look at the tangent space.

Let $M$ be a smooth $n$-manifold with boundary and $p\in \partial M$.
Expand Down Expand Up @@ -286,11 +297,11 @@ \section{Integrals on manifolds}
Then,
\begin{align}
\int_{\varphi(U)} \varphi_*\omega &= \int \omega(p)\, d^n p \\
&\overset{((\bigstar))}{=} \int (\widetilde\omega \circ \varphi)(p) \det(D\varphi|_p) d^n p \\
&\overset{((\clubsuit))}{=} \int \widetilde\omega(q) d^n q\\
&\overset{(\bigstar)}{=} \int (\widetilde\omega \circ \varphi)(p) \det(D\varphi|_p) d^n p \\
&\overset{(\clubsuit)}{=} \int \widetilde\omega(q) d^n q\\
&= \int_{\psi(U)} \psi_*\omega,
\end{align}
where $\omega(p)$ and $\widetilde\omega(q)$ are the local expressions for $\omega$ in the two coordinate charts, in $((\bigstar))$ we applied Proposition~\ref{prop:wedgeToJDet} and in $((\clubsuit))$ we used the classical euclidean change of variables.
where $\omega(p)$ and $\widetilde\omega(q)$ are the local expressions for $\omega$ in the two coordinate charts, in $(\bigstar)$ we applied Proposition~\ref{prop:wedgeToJDet} and in $(\clubsuit)$ we used the classical euclidean change of variables.
\end{proof}

To be able to integrate charts which are not supported in the domain of a single chart, we now need the help of a partition of unity.
Expand Down Expand Up @@ -318,11 +329,11 @@ \section{Integrals on manifolds}
\sum_j \int_{\varphi_j(U_j)} (\varphi_j)_*\left(\rho_j \omega\right)
&= \sum_j \int_{\varphi_j(U_j)} (\varphi_j)_*\left(\rho_j \sum_k \widetilde\rho_k\omega\right) \\
&= \sum_{j,k} \int_{\phi_j(U_j\cap V_k)} (\varphi_j)_* \left(\rho_j \widetilde\rho_k\omega\right) \\
&\overset{((\spadesuit))}{=} \sum_{j,k} \int_{\psi_k(U_j\cap V_k)} (\psi_k)_* \left(\rho_j \widetilde\rho_k\omega\right) \\
&\overset{(\spadesuit)}{=} \sum_{j,k} \int_{\psi_k(U_j\cap V_k)} (\psi_k)_* \left(\rho_j \widetilde\rho_k\omega\right) \\
&= \sum_k \int_{\psi_k(U_j\cap V_k)} (\psi_k)_*\left(\rho_j \widetilde\rho_k \sum_j\rho_j \omega\right) \\
&= \sum_k \int_{\psi_k(V_k)} (\psi_k)_*\left( \widetilde\rho_k \omega\right),
\end{align}
where in $((\spadesuit))$ we used Lemma~\ref{lemma:intindep:chart}.
where in $(\spadesuit)$ we used Lemma~\ref{lemma:intindep:chart}.
\end{proof}

This result can be nicely formalized as follows.
Expand Down Expand Up @@ -379,7 +390,7 @@ \section{Integrals on manifolds}
\end{equation}
\end{example}

\begin{exercise}[Fubini's theorem]\label{exe:fubini}
\begin{exercise}[Fubini's theorem \textit{[homework 4]}]\label{exe:fubini}
Let $M^m$ and $N^n$ be oriented manifolds. Endow $M\times N$ with the product orientation, that is\footnote{An equivalent way is to say that if $v_1,\ldots,v_m\in T_pM$ and $w_1, \ldots, w_n\in T_q N$ are positively oriented bases in the respective spaces, then \begin{equation}
(v_1,0),\ldots,(v_n,0),(0,w_1), \ldots, (0,w_n)\in T_{(p,q)}M\times N
\end{equation}is defined to be a positively oriented basis in the product.}, if $\pi_M : M\times N to M$ and $\pi_N: M\times N \to N$ are the canonical projections on the elements of the product, and $\omega$ and $\eta$ respectively define orientations on $M$ and $N$, then the orientation on $M\times N$ is defined to be the orientation defined by $\pi_M^* \omega \wedge \pi_N^* \eta$.
Expand Down Expand Up @@ -577,10 +588,10 @@ \section{Stokes' Theorem}
\int_M d\omega
&= \int_{\cH^n}(\phi^{-1})^* dw \\
&= \int_{\cH^n} d\left((\phi^{-1})^* \omega\right) \\
&\overset{((\spadesuit))}{=} \int_{\partial \cH^n}(\phi^{-1})^* w \\
&\overset{(\spadesuit)}{=} \int_{\partial \cH^n}(\phi^{-1})^* w \\
&= \int_{\partial M} w ,
\end{align}
where in the $((\spadesuit))$ step we applied the computations above and where $\partial \cH^n$ has the orientation induced by $\cH^n$.
where in the $(\spadesuit)$ step we applied the computations above and where $\partial \cH^n$ has the orientation induced by $\cH^n$.
For a negatively oriented smooth boundary chart, the computation applies with an extra negative sign on each side of the equation.
For an interior chart, we get the same computations with $\R^n$ in place of $\cH^n$.

Expand Down
2 changes: 1 addition & 1 deletion aom.tex
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,7 @@
\setlength{\parskip}{\baselineskip}
Copyright \copyright\ \the\year\ \thanklessauthor

\par Version 0.7.7 -- \today
\par Version 0.8 -- \today

\vfill
\small{\doclicenseThis}
Expand Down

0 comments on commit 9f11559

Please sign in to comment.