Skip to content

pytorch handbook是一本开源的书籍,目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门,其中包含的Pytorch教程全部通过测试保证可以成功运行

Notifications You must be signed in to change notification settings

mypicko/pytorch-handbook

 
 

Repository files navigation

PyTorch 中文手册(pytorch handbook)

pytorch

书籍介绍

这是一本开源的书籍,目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门。

由于本人水平有限,在写此教程的时候参考了一些网上的资料,在这里对他们表示敬意,我会在每个引用中附上原文地址,方便大家参考。

深度学习的技术在飞速的发展,同时PyTorch也在不断更新,且本人会逐步完善相关内容。

版本说明

由于PyTorch版本更迭,教程的版本会与PyTorch版本,保持一致。

pytorch大版本更新的主要变动总结 当前版本 1.11

在线版本和PDF

国内的镜像,速度很快,不会被墙:https://www.pytorch.wiki/

PDF文件目前还没有找到好的生成方法,有熟悉这方面的朋友可以联系我,感激不尽

QQ 6群

群号:760443051

QR

点击链接加入群聊【PyTorch Handbook 交流6群】:https://jq.qq.com/?_wv=1027&k=X4Ro6uWv

1群(985896536)已满,2群(681980831) 3群(773681699)已满 4群(884017356)已满 5群(894059877)已满

不要再加了

新福利

公众账号每日分享干货文章 weixin QR

说明

  • 修改错别字请直接提issue或PR

  • PR时请注意版本

  • 有问题也请直接提issue

感谢

目录

第一章:PyTorch 入门

  1. PyTorch 简介
  2. PyTorch 环境搭建
  3. PyTorch 深度学习:60分钟快速入门(官方)
  4. 相关资源介绍

第二章 基础

第一节 PyTorch 基础

  1. 张量
  2. 自动求导
  3. 神经网络包nn和优化器optm
  4. 数据的加载和预处理

第二节 深度学习基础及数学原理

深度学习基础及数学原理

第三节 神经网络简介

神经网络简介 注:本章在本地使用微软的Edge打开会崩溃,请使Chrome Firefox打开查看

第四节 卷积神经网络

卷积神经网络

第五节 循环神经网络

循环神经网络

第三章 实践

第一节 logistic回归二元分类

logistic回归二元分类

第二节 CNN:MNIST数据集手写数字识别

CNN:MNIST数据集手写数字识别

第三节 RNN实例:通过Sin预测Cos

RNN实例:通过Sin预测Cos

第四章 提高

第一节 Fine-tuning

Fine-tuning

第二节 可视化

visdom

tensorboardx

可视化理解卷积神经网络

第三节 Fast.ai

Fast.ai

第四节 训练的一些技巧

第五节 多GPU并行训练

多GPU并行计算

补充翻译文章:在PyTorch中使用DistributedDataParallel进行多GPU分布式模型训练

在PyTorch中使用DistributedDataParallel进行多GPU分布式模型训练

第五章 应用

第一节 Kaggle介绍

Kaggle介绍

第二节 结构化数据

Pytorch处理结构化数据

第三节 计算机视觉

Fashion MNIST 图像分类

第四节 自然语言处理

第五节 协同过滤

第六章 资源

torchaudio

第七章 附录

树莓派编译安装 pytorch 1.4

transforms的常用操作总结

pytorch的损失函数总结

pytorch的优化器总结

Script

script目录是我写的将ipynb转换成在线的版本和pdf文件的脚本,因为还在测试阶段,所以有什么问题请大家提出

License

本作品采用知识共享署名-非商业性使用-相同方式共享 3.0 中国大陆许可协议进行许可

About

pytorch handbook是一本开源的书籍,目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门,其中包含的Pytorch教程全部通过测试保证可以成功运行

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%