Skip to content
/ a3c Public

PyTorch implementation of "Asynchronous advantage actor-critic"

Notifications You must be signed in to change notification settings

nailo2c/a3c

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

a3c

使用PyTorch實作a3c演算法,參考了openai/universe-starter-agen以tensorflow實作的版本,以及ikostrikov/pytorch-a3c以PyTorch實作的版本。
以ikostrikov為主要參考,加上自行修改的一些部分,並以盡量精簡行數、寫出容易理解的code為目標。

Dependencies

  • Python 3.6
  • Anaconda
  • PyTorch
  • gym
  • gym[atari]
  • opencv-python

Getting Started

以下以Ubuntu 16.04 LTS環境為準,安裝Anaconda時請一路Enter與Yes到底。

wget https://repo.continuum.io/archive/Anaconda3-4.4.0-Linux-x86_64.sh
bash Anaconda3-4.4.0-Linux-x86_64.sh
source .bashrc
conda install pytorch torchvision -c soumith
conda install opencv
conda install libgcc
conda install -c conda-forge ffmpeg
pip install gym[Atari]
sudo apt-get update
sudo apt-get install -y python-numpy python-dev cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig

Rendering on a server

如果是跑在server上,需要依靠xvfb創造虛擬畫面支持rendering。

xvfb-run -s "-screen 0 1400x900x24" python main.py --env-name "Pong-v0" --num-processes 8

Architecture

Result

使用8顆cpu在GCP上跑2個小時。

References

Asynchronous Methods for Deep Reinforcement Learning
openai/universe-starter-agen
ikostrikov/pytorch-a3c

About

PyTorch implementation of "Asynchronous advantage actor-critic"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published