Skip to content

Commit

Permalink
[README.md] - sst2 extracted location + benchmark model arg (#282)
Browse files Browse the repository at this point in the history
  • Loading branch information
bfineran authored Sep 22, 2023
1 parent e929136 commit 303a14a
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,7 @@ Or, to sparsify a BERT model on the SST2 dataset for sentiment analysis, run the
```bash
wget https://public.neuralmagic.com/datasets/nlp/text_classification/sst2_calibration.tar.gz
tar -xzf sst2_calibration.tar.gz
sparsify.run one-shot --use-case text_classification --model "zoo:nlp/sentiment_analysis/bert-base/pytorch/huggingface/sst2/base-none" --data ./sst2_calibration --optim-level 0.5
sparsify.run one-shot --use-case text_classification --model "zoo:nlp/sentiment_analysis/bert-base/pytorch/huggingface/sst2/base-none" --data --data ./sst2_calibration/sst2.hf --optim-level 0.5
```

To dive deeper into One-Shot Experiments, read through the [One-Shot Experiment Guide](https://github.com/neuralmagic/sparsify/blob/main/docs/one-shot-experiment-guide.md).
Expand Down Expand Up @@ -293,17 +293,17 @@ This will run a number of inferences to simulate a real-world scenario and print

It's as simple as running the following command:
```bash
deepsparse.benchmark --model MODEL --scenario SCENARIO
deepsparse.benchmark --model_path MODEL --scenario SCENARIO
```

For example, to benchmark a dense ResNet-50 model, run the following command:
```bash
deepsparse.benchmark --model "zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/base-none" --scenario sync
deepsparse.benchmark --model_path "zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/base-none" --scenario sync
```

This can then be compared to the sparsified ResNet-50 model with the following command:
```bash
deepsparse.benchmark --model "zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none" --scenario sync
deepsparse.benchmark --model_path "zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none" --scenario sync
```

The output will look similar to the following:
Expand Down

0 comments on commit 303a14a

Please sign in to comment.