Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding progress bars for permutations #60

Merged
merged 1 commit into from
Jan 15, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 9 additions & 6 deletions nimare/meta/cbma/ale.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import warnings
from time import time
import multiprocessing as mp
from tqdm.auto import tqdm

import numpy as np
import nibabel as nib
Expand Down Expand Up @@ -267,9 +268,10 @@ def _run_ale(self, ma_maps, prefix='', n_cores=4):
iter_hist_bins = [hist_bins] * self.n_iters
params = zip(iter_dfs, iter_ijks, iter_null_dists, iter_hist_bins,
iter_conns)
pool = mp.Pool(n_cores)
perm_results = pool.map(self._perm, params)
pool.close()

with mp.Pool(n_cores) as p:
perm_results = list(tqdm(p.imap(self._perm, params), total=self.n_iters))

perm_max_values, perm_clust_sizes = zip(*perm_results)

percentile = 100 * (1 - self.clust_thresh)
Expand Down Expand Up @@ -515,9 +517,10 @@ def fit(self, ids, voxel_thresh=0.001, n_iters=10000, n_cores=4):
# Define parameters
iter_dfs = [iter_df] * self.n_iters
params = zip(iter_dfs, iter_ijks)
pool = mp.Pool(n_cores)
perm_scale_values = pool.map(self._perm, params)
pool.close()

with mp.Pool(n_cores) as p:
perm_scale_values = list(tqdm(p.imap(self._perm, params), total=self.n_iters))

perm_scale_values = np.stack(perm_scale_values)

p_values, z_values = self._scale_to_p(ale_values, perm_scale_values,
Expand Down
18 changes: 9 additions & 9 deletions nimare/meta/cbma/mkda.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import warnings
import multiprocessing as mp

from tqdm.auto import tqdm
import numpy as np
import nibabel as nib
from scipy import ndimage, special
Expand Down Expand Up @@ -85,9 +86,9 @@ def fit(self, ids, voxel_thresh=0.01, q=0.05, n_iters=1000, n_cores=4):
iter_dfs = [iter_df] * n_iters
params = zip(iter_ijks, iter_dfs, iter_wv, iter_conn)

pool = mp.Pool(n_cores)
perm_results = pool.map(self._perm, params)
pool.close()
with mp.Pool(n_cores) as p:
perm_results = list(tqdm(p.imap(self._perm, params), total=self.n_iters))

perm_max_values, perm_clust_sizes = zip(*perm_results)

percentile = 100 * (1 - q)
Expand Down Expand Up @@ -251,7 +252,6 @@ def fit(self, ids, ids2=None, voxel_thresh=0.01, q=0.05, corr='FWE',
'specificity_chi2': pFgA_chi2_vals}

if corr == 'FWE':
pool = mp.Pool(n_cores)
iter_dfs = [red_coords.copy()] * n_iters
null_ijk = np.vstack(np.where(self.mask.get_data())).T
rand_idx = np.random.choice(null_ijk.shape[0],
Expand All @@ -260,8 +260,9 @@ def fit(self, ids, ids2=None, voxel_thresh=0.01, q=0.05, corr='FWE',
iter_ijks = np.split(rand_ijk, rand_ijk.shape[1], axis=1)

params = zip(iter_dfs, iter_ijks, range(n_iters))
perm_results = pool.map(self._perm, params)
pool.close()

with mp.Pool(n_cores) as p:
perm_results = list(tqdm(p.imap(self._perm, params), total=self.n_iters))
pAgF_null_chi2_dist, pFgA_null_chi2_dist = zip(*perm_results)

# pAgF_FWE
Expand Down Expand Up @@ -392,9 +393,8 @@ def fit(self, ids, q=0.05, n_iters=10000, n_cores=4):
iter_dfs = [iter_df] * n_iters
params = zip(iter_ijks, iter_dfs)

pool = mp.Pool(n_cores)
perm_max_values = pool.map(self._perm, params)
pool.close()
with mp.Pool(n_cores) as p:
perm_max_values = list(tqdm(p.imap(self._perm, params), total=self.n_iters))

percentile = 100 * (1 - q)

Expand Down