Skip to content

nikhil153/MR_preproc_dash

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MR_preproc_dash

Dashboard to monitor MR image preproc pipeline status

Basic workflow

  • run preproc status script anytime after preproc job has been submitted

  • status script

    • input:

      • data_path to preproc dir containing all the subject subdirectories
      • save_path to dump summary csv and dataframe pickle
    • output: status summary as a csv and a dataframe (or color coded dataframe and pairplots in notebook)

  • functionality

    • checks preproc output directory tree for status "exists" or "missing". Note: this is a squential status overwritting process; i.e. "file missing" implies that the subject, timepoint and output directories exists but a particular file is missing.

      • timepoint dirs (per subject)
      • MR output dirs (per timepoint)
      • MR mnc files (per output dir)
    • extracts registration parameters by inverting registered image (stx, stx2) for each subject and looks for intra-subject (timepoints) outliers.

Code structure

  • ./lib : useful defs
  • ./notebook/MR_preproc_dash_test_code.ipynb: test-run notebook (This will produce color-coded dataframes!!)
  • ./notebook/MR_preproc_dash_registration_metrics.ipynb: notebook for creating reg_param outlier pair-plots
  • ./run_test.py command-line code (This will dump summary data to a csv and df pickle)

Examples

- source /ipl/quarantine/experimental/2013-02-15/init.sh (at BIC) 
- run_test.py:  python run_test.py --data_dir /data/ipl/scratch03/nikhil/MR_preproc_dash/mahsa_preproc_test_data/ --save_path /data/ipl/scratch03/nikhil/MR_preproc_dash/preproc_dash

Limitations

  • Does not QC or check contents of the file during directory tree search

prerequisites

About

dashboard to monitor MR image preproc pipelines

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published