|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "### Tying LQE and Adaptive filter " |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "For a Linear system\n", |
| 15 | + "\\begin{align}\n", |
| 16 | + "\\dot x = Ax \\\\\n", |
| 17 | + "y = Cx\n", |
| 18 | + "\\end{align}\n", |
| 19 | + "\n", |
| 20 | + "Without adding the command, this can also be described by \n", |
| 21 | + "\\begin{align}\n", |
| 22 | + "x(t)= e^{At}.x(0)\n", |
| 23 | + "\\end{align}\n", |
| 24 | + "\n", |
| 25 | + "#### LQR control problem\n", |
| 26 | + "To drive this system states to zero, we add control to the system to push it to the negative real side by adding a control $u = -K_c.x$ (the control gain is the PD gain).\n", |
| 27 | + "\\begin{align}\n", |
| 28 | + "\\begin{split}\n", |
| 29 | + "\\dot x &= Ax + Bu \\\\ \\\\\n", |
| 30 | + "\\dot x &= (A - BK_c)x\n", |
| 31 | + "\\end{split}\n", |
| 32 | + "\\end{align}\n", |
| 33 | + "\n", |
| 34 | + "Now when the eigen values are negative, the exponential $e^{(A - BK_c)}$ can bring the state $x$ to zero from any arbitrary state $x_o$" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "markdown", |
| 39 | + "metadata": {}, |
| 40 | + "source": [ |
| 41 | + "#### LQE problem" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "markdown", |
| 46 | + "metadata": {}, |
| 47 | + "source": [ |
| 48 | + "From the observation $y$, we need to get a $\\hat{x}$, the estimation of the states. The dynamics of this estimate could be written as:\n", |
| 49 | + "\\begin{align}\\begin{split}\n", |
| 50 | + "\\dot{\\hat x} &= A \\hat{x} + Bu + K_f (y-\\hat{y}) \\\\ \\\\\n", |
| 51 | + "&= A \\hat{x} + Bu + K_f y- K_fC\\hat{x} \\\\ \\\\\n", |
| 52 | + "\\dot{\\hat x}&= (A - K_fC) \\hat{x} + \\begin{bmatrix} B & K_f \\end{bmatrix}\n", |
| 53 | + "\\begin{bmatrix} u \\\\ y \\end{bmatrix} \n", |
| 54 | + "\\end{split}\\end{align}" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "markdown", |
| 59 | + "metadata": {}, |
| 60 | + "source": [ |
| 61 | + "To observe the duality between the LQR and LQE system, let's rewrite the LQE problem into the error dynamics ($\\varepsilon =x - \\hat{x}$)\n", |
| 62 | + "\\begin{align}\n", |
| 63 | + "\\begin{split}\n", |
| 64 | + "\\dot \\varepsilon = \\dot x - \\dot{\\hat x} & = (Ax+Bu) - (A - K_fC) \\hat{x} + \\begin{bmatrix} B & K_f \\end{bmatrix}\\begin{bmatrix} u \\\\ y \\end{bmatrix} \\\\\n", |
| 65 | + "& = Ax - A \\hat{x} + Bu - Bu + K_f C \\hat{x} - K_fy\\\\\n", |
| 66 | + "\\dot \\varepsilon &= (A - K_fC)\\varepsilon\n", |
| 67 | + "\\end{split}\n", |
| 68 | + "\\end{align}" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "markdown", |
| 73 | + "metadata": {}, |
| 74 | + "source": [ |
| 75 | + "Comparing this with the LQR problem here we add some $-K_f\\varepsilon$ to the predicted state to converge the error to zero\n" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "markdown", |
| 80 | + "metadata": {}, |
| 81 | + "source": [ |
| 82 | + "#### Adaptive control from LQR\n", |
| 83 | + "For the adaptive control in \n", |
| 84 | + "\\begin{equation}\n", |
| 85 | + "s = \\dot e + \\lambda e \\\\\n", |
| 86 | + "\\end{equation}\n", |
| 87 | + "The non linear parameters specific to the model, example the pendulum\n", |
| 88 | + "\\begin{equation}\n", |
| 89 | + "Y = \\begin{bmatrix} \\ddot x_r & \\dot x & sin(x) \\end{bmatrix}\\\\\n", |
| 90 | + "\\end{equation}\n", |
| 91 | + "And the update of the parameters:\n", |
| 92 | + "\\begin{equation}\n", |
| 93 | + "\\dot {\\hat a} = - \\gamma Y^Ts \\\\\n", |
| 94 | + "u = Y\\hat a - ks\n", |
| 95 | + "\\end{equation}\n", |
| 96 | + "were the $-ks$ part resembles the PD control" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": null, |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [] |
| 105 | + } |
| 106 | + ], |
| 107 | + "metadata": { |
| 108 | + "kernelspec": { |
| 109 | + "display_name": "Python 3", |
| 110 | + "language": "python", |
| 111 | + "name": "python3" |
| 112 | + }, |
| 113 | + "language_info": { |
| 114 | + "codemirror_mode": { |
| 115 | + "name": "ipython", |
| 116 | + "version": 3 |
| 117 | + }, |
| 118 | + "file_extension": ".py", |
| 119 | + "mimetype": "text/x-python", |
| 120 | + "name": "python", |
| 121 | + "nbconvert_exporter": "python", |
| 122 | + "pygments_lexer": "ipython3", |
| 123 | + "version": "3.7.3" |
| 124 | + } |
| 125 | + }, |
| 126 | + "nbformat": 4, |
| 127 | + "nbformat_minor": 2 |
| 128 | +} |
0 commit comments