Skip to content

oh-my-ocr/text_renderer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

71 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Text Renderer

Generate text line images for training deep learning OCR model (e.g. CRNN). example

  • Modular design. You can easily add different components: Corpus, Effect, Layout.
  • Integrate with imgaug, see imgaug_example for usage.
  • Support render multi corpus on image with different effects. Layout is responsible for the layout between multiple corpora
  • Support apply effects on different stages of rendering process corpus_effects, layout_effects, render_effects.
  • Generate vertical text.
  • Support generate lmdb dataset which compatible with PaddleOCR, see Dataset
  • A web font viewer.
  • Corpus sampler: helpful to perform character balance

Documentation

Run Example

Run following command to generate images using example data:

git clone https://github.com/oh-my-ocr/text_renderer
cd text_renderer
python3 setup.py develop
pip3 install -r docker/requirements.txt
python3 main.py \
    --config example_data/example.py \
    --dataset img \
    --num_processes 2 \
    --log_period 10

The data is generated in the example_data/output directory. A labels.json file contains all annotations in follow format:

{
  "labels": {
    "000000000": "test",
    "000000001": "text2"
  },
  "sizes": {
    "000000000": [
      120,
      32 
    ],
    "000000001": [
      128,
      32 
    ]
  },
  "num-samples": 2
}

You can also use --dataset lmdb to store image in lmdb file, lmdb file contains follow keys:

  • num-samples
  • image-000000000
  • label-000000000
  • size-000000000

You can check config file example_data/example.py to learn how to use text_renderer, or follow the Quick Start to learn how to setup configuration

Quick Start

Prepare file resources

  • Font files: .ttf.otf.ttc
  • Background images of any size, either from your business scenario or from publicly available datasets (COCO, VOC)
  • Corpus: text_renderer offers a wide variety of text sampling methods, to use these methods, you need to consider the preparation of the corpus from two perspectives:
  1. The corpus must be in the target language for which you want to perform OCR recognition
  2. The corpus should meets your actual business needs, such as education field, medical field, etc.
  • Charset file [Optional but recommend]: OCR models in real-world scenarios (e.g. CRNN) usually support only a limited character set, so it's better to filter out characters outside the character set during data generation. You can do this by setting the chars_file parameter

You can download pre-prepared file resources for this Quick Start from here:

Save these resource files in the same directory:

workspace
├── bg
│ └── background.png
├── corpus
│ └── eng_text.txt
└── font
    └── simsun.ttf

Create config file

Create a config.py file in workspace directory. One configuration file must have a configs variable, it's a list of GeneratorCfg.

The complete configuration file is as follows:

import os
from pathlib import Path

from text_renderer.effect import *
from text_renderer.corpus import *
from text_renderer.config import (
    RenderCfg,
    NormPerspectiveTransformCfg,
    GeneratorCfg,
    SimpleTextColorCfg,
)

CURRENT_DIR = Path(os.path.abspath(os.path.dirname(__file__)))


def story_data():
    return GeneratorCfg(
        num_image=10,
        save_dir=CURRENT_DIR / "output",
        render_cfg=RenderCfg(
            bg_dir=CURRENT_DIR / "bg",
            height=32,
            perspective_transform=NormPerspectiveTransformCfg(20, 20, 1.5),
            corpus=WordCorpus(
                WordCorpusCfg(
                    text_paths=[CURRENT_DIR / "corpus" / "eng_text.txt"],
                    font_dir=CURRENT_DIR / "font",
                    font_size=(20, 30),
                    num_word=(2, 3),
                ),
            ),
            corpus_effects=Effects(Line(0.9, thickness=(2, 5))),
            gray=False,
            text_color_cfg=SimpleTextColorCfg(),
        ),
    )


configs = [story_data()]

In the above configuration we have done the following things:

  1. Specify the location of the resource file
  2. Specified text sampling method: 2 or 3 words are randomly selected from the corpus
  3. Configured some effects for generation
  4. Specifies font-related parameters: font_size, font_dir

Run

Run main.py, it only has 4 arguments:

  • config:Python config file path
  • dataset: Dataset format img or lmdb
  • num_processes: Number of processes used
  • log_period: Period of log printing. (0, 100)

All Effect/Layout Examples

Find all effect/layout config example at link

  • bg_and_text_mask: Three images of the same width are merged together horizontally, it can be used to train GAN model like EraseNet
Name Example
0 bg_and_text_mask bg_and_text_mask.jpg
1 char_spacing_compact char_spacing_compact.jpg
2 char_spacing_large char_spacing_large.jpg
3 color_image color_image.jpg
4 curve curve.jpg
5 dropout_horizontal dropout_horizontal.jpg
6 dropout_rand dropout_rand.jpg
7 dropout_vertical dropout_vertical.jpg
8 emboss emboss.jpg
9 extra_text_line_layout extra_text_line_layout.jpg
10 line_bottom line_bottom.jpg
11 line_bottom_left line_bottom_left.jpg
12 line_bottom_right line_bottom_right.jpg
13 line_horizontal_middle line_horizontal_middle.jpg
14 line_left line_left.jpg
15 line_right line_right.jpg
16 line_top line_top.jpg
17 line_top_left line_top_left.jpg
18 line_top_right line_top_right.jpg
19 line_vertical_middle line_vertical_middle.jpg
20 padding padding.jpg
21 perspective_transform perspective_transform.jpg
22 same_line_layout_different_font_size same_line_layout_different_font_size.jpg
23 vertical_text vertical_text.jpg

Contribution

Setup Commitizen for commit message

  • Corpus: Feel free to contribute more corpus generators to the project, It does not necessarily need to be a generic corpus generator, but can also be a business-specific generator, such as generating ID numbers

Run in Docker

Build image

docker build -f docker/Dockerfile -t text_renderer .

Config file is provided by CONFIG environment. In example.py file, data is generated in example_data/output directory, so we map this directory to the host.

docker run --rm \
-v `pwd`/example_data/docker_output/:/app/example_data/output \
--env CONFIG=/app/example_data/example.py \
--env DATASET=img \
--env NUM_PROCESSES=2 \
--env LOG_PERIOD=10 \
text_renderer

Font Viewer

Start font viewer

streamlit run tools/font_viewer.py -- web /path/to/fonts_dir

image

Build docs

cd docs
make html
open _build/html/index.html

Citing text_renderer

If you use text_renderer in your research, please consider use the following BibTeX entry.

@misc{text_renderer,
  author =       {oh-my-ocr},
  title =        {text_renderer},
  howpublished = {\url{https://github.com/oh-my-ocr/text_renderer}},
  year =         {2021}
}