import e3nn_jax as e3nn
# Create a random array made of a scalar (0e) and a vector (1o)
array = e3nn.normal("0e + 1o", jax.random.PRNGKey(0))
print(array)
# 1x0e+1x1o [ 1.8160863 -0.75488514 0.33988908 -0.53483534]
# Compute the norms
norms = e3nn.norm(array)
print(norms)
# 1x0e+1x0e [1.8160863 0.98560894]
# Compute the norm of the full array
total_norm = e3nn.norm(array, per_irrep=False)
print(total_norm)
# 1x0e [2.0662997]
# Compute the tensor product of the array with itself
tp = e3nn.tensor_square(array)
print(tp)
# 2x0e+1x1o+1x2e
# [ 1.9041989 0.25082085 -1.3709364 0.61726785 -0.97130704 0.40373924
# -0.25657722 -0.18037902 -0.18178469 -0.14190137]
*Speed comparison done with a full model (MACE) during training (revMD-17) on a GPU (NVIDIA RTX A5000)
Please always check the CHANGELOG for breaking changes.
To install the latest released version:
pip install --upgrade e3nn-jax
To install the latest GitHub version:
pip install git+https://github.com/e3nn/e3nn-jax.git
Ask a question in the discussions tab.
The main difference is the presence of the class IrrepsArray
.
IrrepsArray
contains the irreps (Irreps
) along with the data array.
@misc{e3nn_paper,
doi = {10.48550/ARXIV.2207.09453},
url = {https://arxiv.org/abs/2207.09453},
author = {Geiger, Mario and Smidt, Tess},
keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Neural and Evolutionary Computing (cs.NE), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {e3nn: Euclidean Neural Networks},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}