Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 21 additions & 1 deletion evals/benchmark/stresscli/locust/aistress.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,12 +120,16 @@ def bench_main(self):
"faqgenfixed",
"faqgenbench",
]
if self.environment.parsed_options.bench_target in ["faqgenfixed", "faqgenbench"]:
req_params = {"data": reqData}
else:
req_params = {"json": reqData}
test_start_time = time.time()
try:
start_ts = time.perf_counter()
with self.client.post(
url,
json=reqData,
**req_params,
stream=True if self.environment.parsed_options.bench_target in streaming_bench_target else False,
catch_response=True,
timeout=self.environment.parsed_options.http_timeout,
Expand Down Expand Up @@ -169,6 +173,22 @@ def bench_main(self):
complete_response += content
except json.JSONDecodeError:
continue
elif self.environment.parsed_options.bench_target in ["faqgenfixed", "faqgenbench"]:
client = sseclient.SSEClient(resp)
for event in client.events():
if first_token_ts is None:
first_token_ts = time.perf_counter()
try:
data = json.loads(event.data)
for op in data["ops"]:
if op["path"] == "/logs/HuggingFaceEndpoint/final_output":
generations = op["value"].get("generations", [])
for generation in generations:
for item in generation:
text = item.get("text", "")
complete_response += text
except json.JSONDecodeError:
continue
else:
client = sseclient.SSEClient(resp)
for event in client.events():
Expand Down
11 changes: 5 additions & 6 deletions evals/benchmark/stresscli/locust/faqgenfixed.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,12 +9,11 @@ def getUrl():


def getReqData():
# return {
# "inputs": "What is the revenue of Nike in last 10 years before 2023? Give me detail",
# "parameters": {"max_new_tokens": 128, "do_sample": True},
# }
# return {"query": "What is the revenue of Nike in last 10 years before 2023? Give me detail", "max_tokens": 128}
return {"messages": "What is the revenue of Nike in last 10 years before 2023? Give me detail", "max_tokens": 128}
return {
"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E6.",
"max_tokens": 128,
"top_k": 1,
}


def respStatics(environment, reqData, respData):
Expand Down
2 changes: 1 addition & 1 deletion evals/benchmark/stresscli/locust/tokenresponse.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ def testFunc():

def respStatics(environment, req, resp):
tokenizer = transformers.AutoTokenizer.from_pretrained(environment.parsed_options.llm_model)
if environment.parsed_options.bench_target in ["chatqnafixed", "chatqnabench"]:
if environment.parsed_options.bench_target in ["chatqnafixed", "chatqnabench", "faqgenfixed", "faqgenbench"]:
num_token_input_prompt = len(tokenizer.encode(req["messages"]))
elif environment.parsed_options.bench_target in ["llmfixed"]:
num_token_input_prompt = len(tokenizer.encode(req["query"]))
Expand Down
Loading