Skip to content

Commit

Permalink
[benchmark] add new benchmark: CMMMU (#666)
Browse files Browse the repository at this point in the history
* new branch: cmmmu

* feat

* feat

* feat

* feat

* feat build_prompt

* feat evaluate

* fix

* update CMMMU_TEST md5

* fix

* fix build prompt

* fix build prompt
  • Loading branch information
Myhs-phz authored Dec 19, 2024
1 parent 216a24a commit dbda46a
Show file tree
Hide file tree
Showing 2 changed files with 357 additions and 1 deletion.
4 changes: 3 additions & 1 deletion vlmeval/dataset/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
from .mmgenbench import MMGenBench

from .miabench import MIABench
from .cmmmu import CMMMU
from .wildvision import WildVision
from .mmmath import MMMath
from .dynamath import Dynamath
Expand Down Expand Up @@ -128,7 +129,8 @@ def evaluate(self, eval_file, **judge_kwargs):
MMMUDataset, OCRBench, MathVista, LLaVABench, MMVet, MTVQADataset, TableVQABench,
MMLongBench, VCRDataset, MMDUDataset, DUDE, SlideVQA, MUIRDataset,
GMAIMMBenchDataset, MMERealWorld, HRBenchDataset, CRPE, MathVerse, NaturalBenchDataset,
MIABench, OlympiadBench, WildVision, MMMath, QSpatial, Dynamath, MMGenBench, VizWiz, MMNIAH
MIABench, OlympiadBench, WildVision, MMMath, QSpatial, Dynamath, MMGenBench, VizWiz, MMNIAH,
CMMMU
]

VIDEO_DATASET = [
Expand Down
354 changes: 354 additions & 0 deletions vlmeval/dataset/cmmmu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,354 @@
from .image_base import ImageBaseDataset
import random
from collections import Counter
import os
import re
import tempfile
from ..smp import *


def get_multi_choice_prediction(response, all_choices, index2ans):
for char in [',', '.', '!', '?', ';', ':', "'"]:
response = response.strip(char)
response = " " + response + " " # add space to avoid partial match

candidates = []

for choice in all_choices: # (A) (B) (C) (D)
# Add the choice to candidates each time it appears in the response
candidates.extend([choice for _ in range(response.count(f'({choice})'))])

if len(candidates) == 0:
for choice in all_choices: # A B C D
# Similarly, add the choice for each occurrence
candidates.extend([choice for _ in range(response.count(f'{choice}'))])

if len(candidates) == 0 and len(response.split()) >= 1:
for index, ans in index2ans.items():
# Add index for each occurrence of ans in response
candidates.extend([index for _ in range(response.count(ans))])

# if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example
if len(candidates) == 0 and len(response.split()) >= 1:
for index, ans in index2ans.items():
if ans in response:
candidates.append(index)
# index_ans = False # it's content ans.

if len(candidates) == 0: # still not get answer, randomly choose one.
return random.choice(all_choices)
# return ''
else:
# Count the occurrence of each candidate
candidate_counts = Counter(candidates)

# Select the most frequent candidates
max_count = max(candidate_counts.values())
most_frequent_candidates = [c for c in all_choices if candidate_counts.get(c, 0) == max_count]

# Combine the most frequent candidates in ABCD order
return ''.join(most_frequent_candidates)


def extract_numbers(string):
# Pattern for numbers with Chinese commas
pattern_commas = r'-?\d{1,3}(?:,\d{3})+'
# Pattern for scientific notation
pattern_scientific = r'-?\d+(?:\.\d+)?[eE][+-]?\d+'
# Pattern for simple numbers without Chinese commas
pattern_simple = r'-?(?:\d+\.\d+|\.\d+|\d+)(?![eE][+-]?\d+)(?!,\d)'

# Extract numbers with Chinese commas
numbers_with_commas = re.findall(pattern_commas, string)
# Extract numbers in scientific notation
numbers_scientific = re.findall(pattern_scientific, string)
# Extract simple numbers without Chinese commas
numbers_simple = re.findall(pattern_simple, string)

# Combine all extracted numbers
all_numbers = numbers_with_commas + numbers_scientific + numbers_simple
return all_numbers


def check_is_number(string):
try:
float(string.replace(',', ''))
return True
except ValueError:
# check if there's comma inside
return False


def count_letters(string):
return sum(c.isalpha() and 'a' <= c <= 'z' or 'A' <= c <= 'Z' for c in string)


def normalize_str(string, answer):
# check if characters in the string

# if number, numerize it.
if string is None:
return [string]
string = string.strip()

is_number = check_is_number(string)

if is_number:
string = string.replace(',', '')
string = float(string)
# leave 2 decimal
string = round(string, 2)
return [string]
else: # it's likely to be a string
if len(string) > len(answer) + 20 or count_letters(string) > count_letters(answer) + 2:
return []
return [string]


def get_fill_blank_prediction(response, answer):
"""get the prediction from the generated response,
return a list of predicted strings or numbers"""

def get_key_subresponses(response):
response = response.strip("。").strip()
sub_responses = re.split(r'。|\n', response)
indicators_of_keys = ['是', '为', '所以', '等于', '方案', '选择',
'正确答案', '因此', '最后', '答案', '结果']
key_responses = []
for index, resp in enumerate(sub_responses):
# if last one, accept it's an equation (the entire response can be just one sentence with equation)
if index == len(sub_responses) - 1:
indicators_of_keys.extend(['='])
shortest_key_response = None
# the shortest response that may contain the answer (tail part of the response)
for indicator in indicators_of_keys:
if indicator in resp:
if not shortest_key_response:
shortest_key_response = resp.split(indicator)[-1].strip()
else:
if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response):
shortest_key_response = resp.split(indicator)[-1].strip()

if shortest_key_response:
# and it's not trivial
if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]:
key_responses.append(shortest_key_response)
if len(key_responses) == 0: # did not found any
return [response]
return key_responses

key_responses = get_key_subresponses(response)

pred_list = key_responses.copy() # keep the original string response
for resp in key_responses:
pred_list.extend(extract_numbers(resp))

tmp_pred_list = []
for i in range(len(pred_list)):
tmp_pred_list.extend(normalize_str(pred_list[i], answer))
pred_list = tmp_pred_list

# remove duplicates
pred_list = list(set(pred_list))

return pred_list


def get_TF_prediction(response):
"""get the prediction from the generated response,
return a list of predicted strings or numbers"""

def get_key_subresponses(response):
response = response.strip("。").strip()
sub_responses = re.split(r'。|\n', response)
indicators_of_keys = ['是', '为', '所以', '判断',
'陈述', '说法', '表达', '答案', '结果']
key_responses = []
for index, resp in enumerate(sub_responses):
shortest_key_response = None
# the shortest response that may contain the answer (tail part of the response)
for indicator in indicators_of_keys:
if indicator in resp:
if not shortest_key_response:
shortest_key_response = resp.split(indicator)[-1].strip()
else:
if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response):
shortest_key_response = resp.split(indicator)[-1].strip()

if shortest_key_response:
# and it's not trivial
if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]:
key_responses.append(shortest_key_response)
if len(key_responses) == 0: # did not found any
return [response]
return key_responses

key_responses = get_key_subresponses(response)

pred_list = key_responses.copy() # keep the original string response
# remove duplicates
pred_list = list(set(pred_list))

return pred_list


class CMMMU(ImageBaseDataset):
TYPE = 'VQA'

DATASET_URL = {
'CMMMU_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/CMMMU_VAL.tsv'
}

DATASET_MD5 = {
'CMMMU_VAL': 'b4727e2fce2415bf646379e60c11a726'
}

def dump_image(self, line):
os.makedirs(self.img_root, exist_ok=True)

tgt_path_z = []
if isinstance(line['image'], list):
for i in range(len(line['image'])):
tgt_path = osp.join(self.img_root, f"{line['index']}--{i + 1}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'][i], tgt_path)
tgt_path_z.append(tgt_path)
else:
tgt_path = osp.join(self.img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
tgt_path_z.append(tgt_path)
return tgt_path_z

@classmethod
def evaluate(self, eval_file, **judge_kwargs):

suffix = eval_file.split('.')[-1]
result_file = eval_file.replace(f'.{suffix}', '_acc.csv')

if not osp.exists(result_file):
data = load(eval_file)
assert 'answer' in data and 'prediction' in data
data['prediction'] = [str(x) for x in data['prediction']]
data['answer'] = [str(x) for x in data['answer']]

correct_count = 0
correct_category = {
'技术与工程': [0, 0],
'科学': [0, 0],
'健康与医学': [0, 0],
'商业': [0, 0],
'艺术与设计': [0, 0],
'人文社会科学': [0, 0],
}

for i in tqdm(data.iterrows()):
line = i[1]
correct_category[line['category']][0] += 1

# Options
if line['type'] == '选择':
index2ans = {
'A': line['option1'],
'B': line['option2'],
'C': line['option3'],
'D': line['option4']
}
fact_option = get_multi_choice_prediction(line['prediction'], ['A', 'B', 'C', 'D'], index2ans)
if fact_option == line['answer']:
correct_count += 1
correct_category[line['category']][1] += 1

# Binary
elif line['type'] == '判断':
positive_keywords = ['正确', '对', '准确', '肯定', '对的']
negative_keywords = ['不对', '错误', '不正确', '不准确', '不合适', '否定', '错的', '错']
ambiguous_keywords = ['对错', '是否正确', '否正确', '或者', '是否', '正确性', '对不']

def judge_similarity(pred_list, positive_keywords, negative_keywords):
positive_count = 0
negative_count = 0

for pred in pred_list:
if any(pos_word in pred for pos_word in positive_keywords):
positive_count += 1
elif any(neg_word in pred for neg_word in negative_keywords):
negative_count += 1

if positive_count > negative_count:
return "对"
elif negative_count > positive_count:
return "错"
else:
return random.choice(['对', '错'])

answer = get_TF_prediction(line['prediction'])
answer = [word for word in answer if not any(ambiguous in word for ambiguous in ambiguous_keywords)]
fact_answer = judge_similarity(answer, positive_keywords, negative_keywords)
if fact_answer == line['answer']:
correct_count += 1
correct_category[line['category']][1] += 1

# Fill the Blank
else:
norm_answers = normalize_str(line['answer'], line['answer'])
predicted_answer = get_fill_blank_prediction(line['prediction'], line['answer'])

for pred in predicted_answer:
# already normalized
if isinstance(pred, str): # if it's a string, then find if ans in the pred_i
for norm_ans in norm_answers:
# only see if the string answer in the string pred
# print(norm_ans, pred)
if isinstance(norm_ans, str) and norm_ans in pred:
correct_count += 1
correct_category[line['category']][1] += 1
else: # it's a number
if pred in norm_answers:
correct_count += 1
correct_category[line['category']][1] += 1

accuracyz = {}
accuracyz['总准确率'] = correct_count / len(data)
for i in correct_category.keys():
accuracyz[i] = correct_category[i][1] / correct_category[i][0]

accuracyz = d2df(accuracyz)
accuracyz.round(10)
dump(accuracyz, result_file)

result = pd.read_csv(result_file)
return result

def build_prompt(self, line):
if line['type'] == '选择':
tgt_path = self.dump_image(line)
question = line['question']
options_prompt = 'Options:\n'

for i in [['A', '1'], ['B', '2'], ['C', '3'], ['D', '4']]:
options_prompt += i[0] + '. ' + line['option' + i[1]] + '\n'

prompt = (f'问题: {question}\n' + options_prompt
+ '请回答上述多项选择题,并选出正确选项。这些题目可能包括单选和多选题型。如果所提供的信息不足以确定一个明确的答案,那么请根据可用的数据和你的判断来选择最可能正确的选项。')

msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))

return msgs

elif line['type'] == '判断':
msgs = super().build_prompt(line)
assert msgs[-1]['type'] == 'text'
msgs[-1]['value'] += '\n请回答上述判断题,并根据题目描述和所给的信息来判断问题中陈述的对错。如果信息不完整或不足以作出绝对判断,请运用你的逻辑推理和现有信息来做出最可能的判断。'
return msgs

else:
msgs = super().build_prompt(line)
assert msgs[-1]['type'] == 'text'
msgs[-1]['value'] += '\n请回答上述填空题,并根据题目的要求和所提供的信息来给出最恰当的答案。如果信息不足以确切回答,那么请依据现有的数据和你的推理能力来填写最合理的答案。'
return msgs

0 comments on commit dbda46a

Please sign in to comment.