-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[NPU]a dd roiaware_pool3d_npu (#3213)
* fix lint * fix lint 1 * fix
- Loading branch information
1 parent
edd6728
commit fc85dbd
Showing
1 changed file
with
85 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
#include "pytorch_npu_helper.hpp" | ||
using namespace NPU_NAME_SPACE; | ||
using namespace std; | ||
|
||
void roiaware_pool3d_forward_npu(int boxes_num, int pts_num, int channels, | ||
int max_pts_each_voxel, int out_x, int out_y, | ||
int out_z, const Tensor rois, const Tensor pts, | ||
const Tensor pts_feature, Tensor argmax, | ||
Tensor pts_idx_of_voxels, | ||
Tensor pooled_features, int pool_method) { | ||
at::Tensor rois_cast = rois; | ||
at::Tensor pts_cast = pts; | ||
at::Tensor pts_feature_cast = pts_feature; | ||
at::Tensor pooled_features_cast = pooled_features; | ||
|
||
auto dtype = rois.dtype(); | ||
if (dtype == at::kHalf) { | ||
rois_cast = rois_cast.to(at::kFloat); | ||
pts_cast = pts_cast.to(at::kFloat); | ||
pts_feature_cast = pts_feature_cast.to(at::kFloat); | ||
pooled_features_cast = pooled_features_cast.to(at::kFloat); | ||
} | ||
|
||
EXEC_NPU_CMD(aclnnRoiawarePool3d, rois_cast, pts_cast, pts_feature_cast, | ||
pool_method, max_pts_each_voxel, out_x, out_y, out_z, argmax, | ||
pts_idx_of_voxels, pooled_features_cast); | ||
|
||
if (dtype == at::kHalf) { | ||
pooled_features_cast = pooled_features_cast.to(at::kHalf); | ||
} | ||
|
||
pooled_features.copy_(pooled_features_cast); | ||
} | ||
|
||
void roiaware_pool3d_backward_npu(int boxes_num, int out_x, int out_y, | ||
int out_z, int channels, | ||
int max_pts_each_voxel, | ||
const Tensor pts_idx_of_voxels, | ||
const Tensor argmax, const Tensor grad_out, | ||
Tensor grad_in, int pool_method) { | ||
int32_t npoints = grad_in.size(0); | ||
|
||
auto dtype = grad_out.dtype(); | ||
at::Tensor grad_out_cast = grad_out; | ||
at::Tensor grad_in_cast = grad_in; | ||
|
||
if (dtype == at::kHalf) { | ||
grad_out_cast = grad_out.to(at::kFloat); | ||
grad_in_cast = grad_in_cast.to(at::kFloat); | ||
} | ||
|
||
if (pool_method == 0) { | ||
// maxpool3d | ||
EXEC_NPU_CMD(aclnnRoiawareMaxpool3dGrad, argmax, grad_out_cast, boxes_num, | ||
out_x, out_y, out_z, channels, npoints, grad_in_cast); | ||
} else if (pool_method == 1) { | ||
// avgpool3d | ||
EXEC_NPU_CMD(aclnnRoiawareAvgpool3dGrad, pts_idx_of_voxels, grad_out_cast, | ||
boxes_num, out_x, out_y, out_z, channels, npoints, | ||
max_pts_each_voxel, grad_in_cast); | ||
} | ||
|
||
if (dtype == at::kHalf) { | ||
grad_in_cast = grad_in_cast.to(at::kHalf); | ||
} | ||
|
||
grad_in.copy_(grad_in_cast); | ||
} | ||
|
||
void roiaware_pool3d_forward_impl(int boxes_num, int pts_num, int channels, | ||
int max_pts_each_voxel, int out_x, int out_y, | ||
int out_z, const Tensor rois, | ||
const Tensor pts, const Tensor pts_feature, | ||
Tensor argmax, Tensor pts_idx_of_voxels, | ||
Tensor pooled_features, int pool_method); | ||
|
||
void roiaware_pool3d_backward_impl(int boxes_num, int out_x, int out_y, | ||
int out_z, int channels, | ||
int max_pts_each_voxel, | ||
const Tensor pts_idx_of_voxels, | ||
const Tensor argmax, const Tensor grad_out, | ||
Tensor grad_in, int pool_method); | ||
|
||
REGISTER_NPU_IMPL(roiaware_pool3d_forward_impl, roiaware_pool3d_forward_npu); | ||
REGISTER_NPU_IMPL(roiaware_pool3d_backward_impl, roiaware_pool3d_backward_npu); |