Skip to content

Commit

Permalink
src/sage/**/*.py: remove GAP warnings from expected output
Browse files Browse the repository at this point in the history
The warning "#I  Forcing finiteness test" should no longer be emitted
when checking for group isomorphism, so we remove it from the expected
output in a few places.

Fixes sagemath#38889
  • Loading branch information
orlitzky committed Nov 12, 2024
1 parent 704ed9f commit 060f115
Show file tree
Hide file tree
Showing 4 changed files with 0 additions and 14 deletions.
2 changes: 0 additions & 2 deletions src/sage/groups/cubic_braid.py
Original file line number Diff line number Diff line change
Expand Up @@ -640,7 +640,6 @@ class CubicBraidGroup(UniqueRepresentation, FinitelyPresentedGroup):
sage: C3.gens()
(t0, t1)
sage: U3.is_isomorphic(C3)
#I Forcing finiteness test
True
sage: U3.as_classical_group()
Subgroup generated by [(1,7,6)(3,19,14)(4,15,10)(5,11,18)(12,16,20),
Expand Down Expand Up @@ -1604,7 +1603,6 @@ def as_permutation_group(self, use_classical=True):
sage: C3 = CubicBraidGroup(3)
sage: PC3 = C3.as_permutation_group()
sage: assert C3.is_isomorphic(PC3) # random (with respect to the occurrence of the info message)
#I Forcing finiteness test
sage: PC3.degree()
8
sage: c = C3([2,1-2])
Expand Down
4 changes: 0 additions & 4 deletions src/sage/groups/finitely_presented.py
Original file line number Diff line number Diff line change
Expand Up @@ -1080,7 +1080,6 @@ def direct_product(self, H, reduced=False, new_names=True):
sage: C7 = G / [G.0**7]; C6 = G / [G.0**6]
sage: C14 = G / [G.0**14]; C3 = G / [G.0**3]
sage: C7.direct_product(C6).is_isomorphic(C14.direct_product(C3))
#I Forcing finiteness test
True
sage: F = FreeGroup(2); D = F / [F([1,1,1,1,1]),F([2,2]),F([1,2])**2]
sage: D.direct_product(D).as_permutation_group().is_isomorphic(
Expand Down Expand Up @@ -1174,7 +1173,6 @@ def semidirect_product(self, H, hom, check=True, reduced=False):
sage: alpha = (Q.gens(), [a,b])
sage: S2 = C2.semidirect_product(Q, ([C2.0],[alpha]))
sage: S1.is_isomorphic(S2)
#I Forcing finiteness test
True
Dihedral groups can be constructed as semidirect products
Expand Down Expand Up @@ -1233,8 +1231,6 @@ def semidirect_product(self, H, hom, check=True, reduced=False):
sage: Se2 = D.semidirect_product(C ,id2)
sage: Dp1 = C.direct_product(D)
sage: Dp1.is_isomorphic(Se1), Dp1.is_isomorphic(Se2)
#I Forcing finiteness test
#I Forcing finiteness test
(True, True)
Most checks for validity of input are left to GAP to handle::
Expand Down
7 changes: 0 additions & 7 deletions src/sage/groups/finitely_presented_named.py
Original file line number Diff line number Diff line change
Expand Up @@ -451,7 +451,6 @@ def QuaternionPresentation():
sage: Q.order(), Q.is_abelian()
(8, False)
sage: Q.is_isomorphic(groups.presentation.DiCyclic(2))
#I Forcing finiteness test
True
"""
F = FreeGroup(['a','b'])
Expand Down Expand Up @@ -554,12 +553,6 @@ def BinaryDihedralPresentation(n):
....: P = groups.presentation.BinaryDihedral(n)
....: M = groups.matrix.BinaryDihedral(n)
....: assert P.is_isomorphic(M)
#I Forcing finiteness test
#I Forcing finiteness test
#I Forcing finiteness test
#I Forcing finiteness test
#I Forcing finiteness test
#I Forcing finiteness test
"""
F = FreeGroup('x,y,z')
x,y,z = F.gens()
Expand Down
1 change: 0 additions & 1 deletion src/sage/schemes/curves/projective_curve.py
Original file line number Diff line number Diff line change
Expand Up @@ -1805,7 +1805,6 @@ def fundamental_group(self):
....: + (x-18*z)*(z^2+11*x*z-x^2)^2)
sage: G0 = C.fundamental_group() # needs sirocco
sage: G.is_isomorphic(G0) # needs sirocco
#I Forcing finiteness test
True
sage: C = P.curve(z)
sage: C.fundamental_group() # needs sirocco
Expand Down

0 comments on commit 060f115

Please sign in to comment.