Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: Enable pytables to round-trip with StringDtype #60663

Merged
merged 7 commits into from
Jan 23, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.3.0.rst
Original file line number Diff line number Diff line change
@@ -35,6 +35,7 @@ Other enhancements
- The semantics for the ``copy`` keyword in ``__array__`` methods (i.e. called
when using ``np.array()`` or ``np.asarray()`` on pandas objects) has been
updated to work correctly with NumPy >= 2 (:issue:`57739`)
- :meth:`~Series.to_hdf` and :meth:`~DataFrame.to_hdf` now round-trip with ``StringDtype`` (:issue:`60663`)
- The :meth:`~Series.cumsum`, :meth:`~Series.cummin`, and :meth:`~Series.cummax` reductions are now implemented for ``StringDtype`` columns when backed by PyArrow (:issue:`60633`)
- The :meth:`~Series.sum` reduction is now implemented for ``StringDtype`` columns (:issue:`59853`)

36 changes: 30 additions & 6 deletions pandas/io/pytables.py
Original file line number Diff line number Diff line change
@@ -86,12 +86,16 @@
PeriodArray,
)
from pandas.core.arrays.datetimes import tz_to_dtype
from pandas.core.arrays.string_ import BaseStringArray
import pandas.core.common as com
from pandas.core.computation.pytables import (
PyTablesExpr,
maybe_expression,
)
from pandas.core.construction import extract_array
from pandas.core.construction import (
array as pd_array,
extract_array,
)
from pandas.core.indexes.api import ensure_index

from pandas.io.common import stringify_path
@@ -3023,6 +3027,9 @@ def read_array(self, key: str, start: int | None = None, stop: int | None = None

if isinstance(node, tables.VLArray):
ret = node[0][start:stop]
dtype = getattr(attrs, "value_type", None)
if dtype is not None:
ret = pd_array(ret, dtype=dtype)
else:
dtype = getattr(attrs, "value_type", None)
shape = getattr(attrs, "shape", None)
@@ -3262,6 +3269,11 @@ def write_array(
elif lib.is_np_dtype(value.dtype, "m"):
self._handle.create_array(self.group, key, value.view("i8"))
getattr(self.group, key)._v_attrs.value_type = "timedelta64"
elif isinstance(value, BaseStringArray):
vlarr = self._handle.create_vlarray(self.group, key, _tables().ObjectAtom())
vlarr.append(value.to_numpy())
node = getattr(self.group, key)
node._v_attrs.value_type = str(value.dtype)
elif empty_array:
self.write_array_empty(key, value)
else:
@@ -3294,7 +3306,11 @@ def read(
index = self.read_index("index", start=start, stop=stop)
values = self.read_array("values", start=start, stop=stop)
result = Series(values, index=index, name=self.name, copy=False)
if using_string_dtype() and is_string_array(values, skipna=True):
if (
using_string_dtype()
and isinstance(values, np.ndarray)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm assuming read_array can return a non-ndarray type here? Does this prevent against pyarrow arrays?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm assuming read_array can return a non-ndarray type here?

Correct - datetime and string currently.

and is_string_array(values, skipna=True)
):
result = result.astype(StringDtype(na_value=np.nan))
return result

@@ -3363,7 +3379,11 @@ def read(

columns = items[items.get_indexer(blk_items)]
df = DataFrame(values.T, columns=columns, index=axes[1], copy=False)
if using_string_dtype() and is_string_array(values, skipna=True):
if (
using_string_dtype()
and isinstance(values, np.ndarray)
and is_string_array(values, skipna=True)
):
df = df.astype(StringDtype(na_value=np.nan))
dfs.append(df)

@@ -4737,9 +4757,13 @@ def read(
df = DataFrame._from_arrays([values], columns=cols_, index=index_)
if not (using_string_dtype() and values.dtype.kind == "O"):
assert (df.dtypes == values.dtype).all(), (df.dtypes, values.dtype)
if using_string_dtype() and is_string_array(
values, # type: ignore[arg-type]
skipna=True,
if (
using_string_dtype()
and isinstance(values, np.ndarray)
and is_string_array(
values,
skipna=True,
)
):
df = df.astype(StringDtype(na_value=np.nan))
frames.append(df)
70 changes: 56 additions & 14 deletions pandas/tests/io/pytables/test_put.py
Original file line number Diff line number Diff line change
@@ -3,8 +3,6 @@
import numpy as np
import pytest

from pandas._config import using_string_dtype

from pandas._libs.tslibs import Timestamp

import pandas as pd
@@ -26,7 +24,6 @@

pytestmark = [
pytest.mark.single_cpu,
pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)", strict=False),
]


@@ -54,8 +51,8 @@ def test_api_default_format(tmp_path, setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
columns=Index(list("ABCD")),
index=Index([f"i-{i}" for i in range(30)]),
)

with pd.option_context("io.hdf.default_format", "fixed"):
@@ -79,8 +76,8 @@ def test_api_default_format(tmp_path, setup_path):
path = tmp_path / setup_path
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
columns=Index(list("ABCD")),
index=Index([f"i-{i}" for i in range(30)]),
)

with pd.option_context("io.hdf.default_format", "fixed"):
@@ -106,7 +103,7 @@ def test_put(setup_path):
)
df = DataFrame(
np.random.default_rng(2).standard_normal((20, 4)),
columns=Index(list("ABCD"), dtype=object),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=20, freq="B"),
)
store["a"] = ts
@@ -166,7 +163,7 @@ def test_put_compression(setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=10, freq="B"),
)

@@ -183,7 +180,7 @@ def test_put_compression(setup_path):
def test_put_compression_blosc(setup_path):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=10, freq="B"),
)

@@ -197,10 +194,20 @@ def test_put_compression_blosc(setup_path):
tm.assert_frame_equal(store["c"], df)


def test_put_mixed_type(setup_path, performance_warning):
def test_put_datetime_ser(setup_path, performance_warning, using_infer_string):
# https://github.com/pandas-dev/pandas/pull/60663
ser = Series(3 * [Timestamp("20010102").as_unit("ns")])
with ensure_clean_store(setup_path) as store:
store.put("ser", ser)
expected = ser.copy()
result = store.get("ser")
tm.assert_series_equal(result, expected)


def test_put_mixed_type(setup_path, performance_warning, using_infer_string):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df["obj1"] = "foo"
@@ -220,13 +227,42 @@ def test_put_mixed_type(setup_path, performance_warning):
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")

with tm.assert_produces_warning(performance_warning):
warning = None if using_infer_string else performance_warning
with tm.assert_produces_warning(warning):
store.put("df", df)

expected = store.get("df")
tm.assert_frame_equal(expected, df)


def test_put_str_frame(setup_path, performance_warning, string_dtype_arguments):
# https://github.com/pandas-dev/pandas/pull/60663
dtype = pd.StringDtype(*string_dtype_arguments)
df = DataFrame({"a": pd.array(["x", pd.NA, "y"], dtype=dtype)})
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")

store.put("df", df)
expected_dtype = "str" if dtype.na_value is np.nan else "string"
expected = df.astype(expected_dtype)
result = store.get("df")
tm.assert_frame_equal(result, expected)


def test_put_str_series(setup_path, performance_warning, string_dtype_arguments):
# https://github.com/pandas-dev/pandas/pull/60663
dtype = pd.StringDtype(*string_dtype_arguments)
ser = Series(["x", pd.NA, "y"], dtype=dtype)
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")

store.put("ser", ser)
expected_dtype = "str" if dtype.na_value is np.nan else "string"
expected = ser.astype(expected_dtype)
result = store.get("ser")
tm.assert_series_equal(result, expected)


@pytest.mark.parametrize("format", ["table", "fixed"])
@pytest.mark.parametrize(
"index",
@@ -253,7 +289,7 @@ def test_store_index_types(setup_path, format, index):
tm.assert_frame_equal(df, store["df"])


def test_column_multiindex(setup_path):
def test_column_multiindex(setup_path, using_infer_string):
# GH 4710
# recreate multi-indexes properly

@@ -264,6 +300,12 @@ def test_column_multiindex(setup_path):
expected = df.set_axis(df.index.to_numpy())

with ensure_clean_store(setup_path) as store:
if using_infer_string:
# TODO(infer_string) make this work for string dtype
msg = "Saving a MultiIndex with an extension dtype is not supported."
with pytest.raises(NotImplementedError, match=msg):
store.put("df", df)
return
store.put("df", df)
tm.assert_frame_equal(
store["df"], expected, check_index_type=True, check_column_type=True