Skip to content

Commit

Permalink
Add first draft of model registry kserve custom storage initializer (k…
Browse files Browse the repository at this point in the history
…ubeflow#25)

* Add first draft of model registry custom storage initializer

Signed-off-by: Andrea Lamparelli <[email protected]>

* Add documentation and get started guide

Signed-off-by: Andrea Lamparelli <[email protected]>

---------

Signed-off-by: Andrea Lamparelli <[email protected]>
  • Loading branch information
lampajr authored Mar 8, 2024
1 parent 3effffe commit 1bedfbd
Show file tree
Hide file tree
Showing 12 changed files with 1,087 additions and 1 deletion.
2 changes: 1 addition & 1 deletion Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ IMG_VERSION ?= main
# container image repository
IMG_REPO ?= model-registry
# container image
IMG := ${IMG_REGISTRY}/$(IMG_ORG)/$(IMG_REPO)
IMG ?= ${IMG_REGISTRY}/$(IMG_ORG)/$(IMG_REPO)

model-registry: build

Expand Down
19 changes: 19 additions & 0 deletions csi/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
# If you prefer the allow list template instead of the deny list, see community template:
# https://github.com/github/gitignore/blob/main/community/Golang/Go.AllowList.gitignore
#
# Binaries for programs and plugins
*.exe
*.exe~
*.dll
*.so
*.dylib
bin/

# Test binary, built with `go test -c`
*.test

# Output of the go coverage tool, specifically when used with LiteIDE
*.out

# Go workspace file
go.work
32 changes: 32 additions & 0 deletions csi/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# Build the model-registry binary
FROM registry.access.redhat.com/ubi8/go-toolset:1.19 as builder

WORKDIR /workspace
# Copy the Go Modules manifests
COPY ["go.mod", "go.sum", "./"]
# cache deps before building and copying source so that we don't need to re-download as much
# and so that source changes don't invalidate our downloaded layer
RUN go mod download

USER root

# Copy the go source
COPY ["Makefile", "main.go", "./"]

# Copy rest of the source
COPY bin/ bin/
COPY pkg/ pkg/

# Build
USER root
RUN CGO_ENABLED=1 GOOS=linux GOARCH=amd64 make build

# Use distroless as minimal base image to package the model-registry storage initializer binary
# Refer to https://github.com/GoogleContainerTools/distroless for more details
FROM registry.access.redhat.com/ubi8/ubi-minimal:8.8
WORKDIR /
# copy the storage initializer binary
COPY --from=builder /workspace/bin/mr-storage-initializer .
USER 65532:65532

ENTRYPOINT ["/mr-storage-initializer"]
249 changes: 249 additions & 0 deletions csi/GET_STARTED.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,249 @@
# Get Started

Embark on your journey with this custom storage initializer by exploring a simple hello-world example. Learn how to seamlessly integrate and leverage the power of this tool in just a few steps.

## Prerequisites

* Install [Kind](https://kind.sigs.k8s.io/docs/user/quick-start) (Kubernetes in Docker) to run local Kubernetes cluster with Docker container nodes.
* Install the [Kubernetes CLI (kubectl)](https://kubernetes.io/docs/tasks/tools/), which allows you to run commands against Kubernetes clusters.
* Install the [Kustomize](https://kustomize.io/), which allows you to customize app configuration.

## Environment Preparation

We assume all [prerequisites](#prerequisites) are satisfied at this point.

### Create the environment

1. After having kind installed, create a kind cluster with:
```bash
kind create cluster
```

2. Configure `kubectl` to use kind context
```bash
kubectl config use-context kind-kind
```

3. Setup local deployment of *Kserve* using the provided *Kserve quick installation* script
```bash
curl -s "https://raw.githubusercontent.com/kserve/kserve/release-0.11/hack/quick_install.sh" | bash
```

4. Install *model registry* in the local cluster

[Optional ]Use model registry with local changes:

```bash
TAG=$(git rev-parse HEAD) && \
MR_IMG=quay.io/$USER/model-registry:$TAG && \
make -C ../ IMG_ORG=$USER IMG_VERSION=$TAG image/build && \
kind load docker-image $MR_IMG
```

then:

```bash
bash ./scripts/install_modelregistry.sh -i $MR_IMG
```

> _NOTE_: If you want to use a remote image you can simply remove the `-i` option
> _NOTE_: The `./scripts/install_modelregistry.sh` will make some change to [base/kustomization.yaml](../manifests/kustomize/base/kustomization.yaml) that you DON'T need to commit!!
5. [Optional] Use local container image for CSI

```bash
IMG=quay.io/$USER/model-registry-storage-initializer:$(git rev-parse HEAD) && make IMG=$IMG docker-build && kind load docker-image $IMG
```

## First InferenceService with ModelRegistry URI

In this tutorial, you will deploy an InferenceService with a predictor that will load a model indexed into the model registry, the indexed model refers to a scikit-learn model trained with the [iris](https://archive.ics.uci.edu/ml/datasets/iris) dataset. This dataset has three output class: Iris Setosa, Iris Versicolour, and Iris Virginica.

You will then send an inference request to your deployed model in order to get a prediction for the class of iris plant your request corresponds to.

Since your model is being deployed as an InferenceService, not a raw Kubernetes Service, you just need to provide the storage location of the model using the `model-registry://` URI format and it gets some super powers out of the box.


### Register a Model into ModelRegistry

Apply `Port Forward` to the model registry service in order to being able to interact with it from the outside of the cluster.
```bash
kubectl port-forward --namespace kubeflow svc/model-registry-service 8080:8080
```

And then (in another terminal):
```bash
export MR_HOSTNAME=localhost:8080
```

Then, in the same terminal where you exported `MR_HOSTNAME`, perform the following actions:
1. Register an empty `RegisteredModel`

```bash
curl --silent -X 'POST' \
"$MR_HOSTNAME/api/model_registry/v1alpha2/registered_models" \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"description": "Iris scikit-learn model",
"name": "iris"
}'
```

Expected output:
```bash
{"createTimeSinceEpoch":"1709287882361","customProperties":{},"description":"Iris scikit-learn model","id":"1","lastUpdateTimeSinceEpoch":"1709287882361","name":"iris"}
```

2. Register the first `ModelVersion`

```bash
curl --silent -X 'POST' \
"$MR_HOSTNAME/api/model_registry/v1alpha2/model_versions" \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"description": "Iris model version v1",
"name": "v1",
"registeredModelID": "1"
}'
```

Expected output:
```bash
{"createTimeSinceEpoch":"1709287890365","customProperties":{},"description":"Iris model version v1","id":"2","lastUpdateTimeSinceEpoch":"1709287890365","name":"v1"}
```

3. Register the raw `ModelArtifact`

This artifact defines where the actual trained model is stored, i.e., `gs://kfserving-examples/models/sklearn/1.0/model`

```bash
curl --silent -X 'POST' \
"$MR_HOSTNAME/api/model_registry/v1alpha2/model_versions/2/artifacts" \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"description": "Model artifact for Iris v1",
"uri": "gs://kfserving-examples/models/sklearn/1.0/model",
"state": "UNKNOWN",
"name": "iris-model-v1",
"modelFormatName": "sklearn",
"modelFormatVersion": "1",
"artifactType": "model-artifact"
}'
```

Expected output:
```bash
{"artifactType":"model-artifact","createTimeSinceEpoch":"1709287972637","customProperties":{},"description":"Model artifact for Iris v1","id":"1","lastUpdateTimeSinceEpoch":"1709287972637","modelFormatName":"sklearn","modelFormatVersion":"1","name":"iris-model-v1","state":"UNKNOWN","uri":"gs://kfserving-examples/models/sklearn/1.0/model"}
```

> _NOTE_: double check the provided IDs are the expected ones.
### Apply the `ClusterStorageContainer` resource

Retrieve the model registry service and MLMD port:
```bash
MODEL_REGISTRY_SERVICE=model-registry-service
MODEL_REGISTRY_REST_PORT=$(kubectl get svc/$MODEL_REGISTRY_SERVICE -n kubeflow --output jsonpath='{.spec.ports[0].targetPort}' )
```

Apply the cluster-scoped `ClusterStorageContainer` CR to setup configure the `model registry storage initilizer` for `model-registry://` URI formats.

```bash
kubectl apply -f - <<EOF
apiVersion: "serving.kserve.io/v1alpha1"
kind: ClusterStorageContainer
metadata:
name: mr-initializer
spec:
container:
name: storage-initializer
image: $IMG
env:
- name: MODEL_REGISTRY_BASE_URL
value: "$MODEL_REGISTRY_SERVICE.kubeflow.svc.cluster.local:$MODEL_REGISTRY_REST_PORT"
- name: MODEL_REGISTRY_SCHEME
value: "http"
resources:
requests:
memory: 100Mi
cpu: 100m
limits:
memory: 1Gi
cpu: "1"
supportedUriFormats:
- prefix: model-registry://
EOF
```

> _NOTE_: as `$IMG` you could use either the one created during [env preparation](#environment-preparation) or any other remote img in the container registry.
### Create an `InferenceService`

1. Create a namespace
```bash
kubectl create namespace kserve-test
```

2. Create the `InferenceService`
```bash
kubectl apply -n kserve-test -f - <<EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "iris-model"
spec:
predictor:
model:
modelFormat:
name: sklearn
storageUri: "model-registry://iris/v1"
EOF
```

3. Check `InferenceService` status
```bash
kubectl get inferenceservices iris-model -n kserve-test
```

4. Determine the ingress IP and ports

```bash
kubectl get svc istio-ingressgateway -n istio-system
```

And then:
```bash
INGRESS_GATEWAY_SERVICE=$(kubectl get svc --namespace istio-system --selector="app=istio-ingressgateway" --output jsonpath='{.items[0].metadata.name}')
kubectl port-forward --namespace istio-system svc/${INGRESS_GATEWAY_SERVICE} 8081:80
```

After that (in another terminal):
```bash
export INGRESS_HOST=localhost
export INGRESS_PORT=8081
```

5. Perform the inference request

Prepare the input data:
```bash
cat <<EOF > "/tmp/iris-input.json"
{
"instances": [
[6.8, 2.8, 4.8, 1.4],
[6.0, 3.4, 4.5, 1.6]
]
}
EOF
```

If you do not have DNS, you can still curl with the ingress gateway external IP using the HOST Header.
```bash
SERVICE_HOSTNAME=$(kubectl get inferenceservice iris-model -n kserve-test -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" "http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/iris-v1:predict" -d @/tmp/iris-input.json
```
37 changes: 37 additions & 0 deletions csi/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
IMG ?= quay.io/${USER}/model-registry-storage-initializer:latest

.PHONY: help
help: ## Display this help.
@awk 'BEGIN {FS = ":.*##"; printf "\nUsage:\n make \033[36m<target>\033[0m\n"} /^[a-zA-Z_0-9-]+:.*?##/ { printf " \033[36m%-15s\033[0m %s\n", $$1, $$2 } /^##@/ { printf "\n\033[1m%s\033[0m\n", substr($$0, 5) } ' $(MAKEFILE_LIST)

##@ Development

.PHONY: fmt
fmt: ## Run go fmt against code.
go fmt ./...

.PHONY: vet
vet: ## Run go vet against code.
go vet ./...

.PHONY: test
test: fmt vet ## Run tests.
go test ./... -coverprofile cover.out

##@ Build

.PHONY: build
build: fmt vet ## Build binary.
go build -o bin/mr-storage-initializer main.go

.PHONY: run
run: fmt vet ## Run the program
go run ./main.go $(SOURCE_URI) $(DEST_PATH)

.PHONY: docker-build
docker-build: test ## Build docker image.
docker build . -f ./Dockerfile -t ${IMG}

.PHONY: docker-push
docker-push: ## Push docker image.
docker push ${IMG}
Loading

0 comments on commit 1bedfbd

Please sign in to comment.