forked from kubeflow/model-registry
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add first draft of model registry kserve custom storage initializer (k…
…ubeflow#25) * Add first draft of model registry custom storage initializer Signed-off-by: Andrea Lamparelli <[email protected]> * Add documentation and get started guide Signed-off-by: Andrea Lamparelli <[email protected]> --------- Signed-off-by: Andrea Lamparelli <[email protected]>
- Loading branch information
Showing
12 changed files
with
1,087 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# If you prefer the allow list template instead of the deny list, see community template: | ||
# https://github.com/github/gitignore/blob/main/community/Golang/Go.AllowList.gitignore | ||
# | ||
# Binaries for programs and plugins | ||
*.exe | ||
*.exe~ | ||
*.dll | ||
*.so | ||
*.dylib | ||
bin/ | ||
|
||
# Test binary, built with `go test -c` | ||
*.test | ||
|
||
# Output of the go coverage tool, specifically when used with LiteIDE | ||
*.out | ||
|
||
# Go workspace file | ||
go.work |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
# Build the model-registry binary | ||
FROM registry.access.redhat.com/ubi8/go-toolset:1.19 as builder | ||
|
||
WORKDIR /workspace | ||
# Copy the Go Modules manifests | ||
COPY ["go.mod", "go.sum", "./"] | ||
# cache deps before building and copying source so that we don't need to re-download as much | ||
# and so that source changes don't invalidate our downloaded layer | ||
RUN go mod download | ||
|
||
USER root | ||
|
||
# Copy the go source | ||
COPY ["Makefile", "main.go", "./"] | ||
|
||
# Copy rest of the source | ||
COPY bin/ bin/ | ||
COPY pkg/ pkg/ | ||
|
||
# Build | ||
USER root | ||
RUN CGO_ENABLED=1 GOOS=linux GOARCH=amd64 make build | ||
|
||
# Use distroless as minimal base image to package the model-registry storage initializer binary | ||
# Refer to https://github.com/GoogleContainerTools/distroless for more details | ||
FROM registry.access.redhat.com/ubi8/ubi-minimal:8.8 | ||
WORKDIR / | ||
# copy the storage initializer binary | ||
COPY --from=builder /workspace/bin/mr-storage-initializer . | ||
USER 65532:65532 | ||
|
||
ENTRYPOINT ["/mr-storage-initializer"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,249 @@ | ||
# Get Started | ||
|
||
Embark on your journey with this custom storage initializer by exploring a simple hello-world example. Learn how to seamlessly integrate and leverage the power of this tool in just a few steps. | ||
|
||
## Prerequisites | ||
|
||
* Install [Kind](https://kind.sigs.k8s.io/docs/user/quick-start) (Kubernetes in Docker) to run local Kubernetes cluster with Docker container nodes. | ||
* Install the [Kubernetes CLI (kubectl)](https://kubernetes.io/docs/tasks/tools/), which allows you to run commands against Kubernetes clusters. | ||
* Install the [Kustomize](https://kustomize.io/), which allows you to customize app configuration. | ||
|
||
## Environment Preparation | ||
|
||
We assume all [prerequisites](#prerequisites) are satisfied at this point. | ||
|
||
### Create the environment | ||
|
||
1. After having kind installed, create a kind cluster with: | ||
```bash | ||
kind create cluster | ||
``` | ||
|
||
2. Configure `kubectl` to use kind context | ||
```bash | ||
kubectl config use-context kind-kind | ||
``` | ||
|
||
3. Setup local deployment of *Kserve* using the provided *Kserve quick installation* script | ||
```bash | ||
curl -s "https://raw.githubusercontent.com/kserve/kserve/release-0.11/hack/quick_install.sh" | bash | ||
``` | ||
|
||
4. Install *model registry* in the local cluster | ||
|
||
[Optional ]Use model registry with local changes: | ||
|
||
```bash | ||
TAG=$(git rev-parse HEAD) && \ | ||
MR_IMG=quay.io/$USER/model-registry:$TAG && \ | ||
make -C ../ IMG_ORG=$USER IMG_VERSION=$TAG image/build && \ | ||
kind load docker-image $MR_IMG | ||
``` | ||
|
||
then: | ||
|
||
```bash | ||
bash ./scripts/install_modelregistry.sh -i $MR_IMG | ||
``` | ||
|
||
> _NOTE_: If you want to use a remote image you can simply remove the `-i` option | ||
> _NOTE_: The `./scripts/install_modelregistry.sh` will make some change to [base/kustomization.yaml](../manifests/kustomize/base/kustomization.yaml) that you DON'T need to commit!! | ||
5. [Optional] Use local container image for CSI | ||
|
||
```bash | ||
IMG=quay.io/$USER/model-registry-storage-initializer:$(git rev-parse HEAD) && make IMG=$IMG docker-build && kind load docker-image $IMG | ||
``` | ||
|
||
## First InferenceService with ModelRegistry URI | ||
|
||
In this tutorial, you will deploy an InferenceService with a predictor that will load a model indexed into the model registry, the indexed model refers to a scikit-learn model trained with the [iris](https://archive.ics.uci.edu/ml/datasets/iris) dataset. This dataset has three output class: Iris Setosa, Iris Versicolour, and Iris Virginica. | ||
|
||
You will then send an inference request to your deployed model in order to get a prediction for the class of iris plant your request corresponds to. | ||
|
||
Since your model is being deployed as an InferenceService, not a raw Kubernetes Service, you just need to provide the storage location of the model using the `model-registry://` URI format and it gets some super powers out of the box. | ||
|
||
|
||
### Register a Model into ModelRegistry | ||
|
||
Apply `Port Forward` to the model registry service in order to being able to interact with it from the outside of the cluster. | ||
```bash | ||
kubectl port-forward --namespace kubeflow svc/model-registry-service 8080:8080 | ||
``` | ||
|
||
And then (in another terminal): | ||
```bash | ||
export MR_HOSTNAME=localhost:8080 | ||
``` | ||
|
||
Then, in the same terminal where you exported `MR_HOSTNAME`, perform the following actions: | ||
1. Register an empty `RegisteredModel` | ||
|
||
```bash | ||
curl --silent -X 'POST' \ | ||
"$MR_HOSTNAME/api/model_registry/v1alpha2/registered_models" \ | ||
-H 'accept: application/json' \ | ||
-H 'Content-Type: application/json' \ | ||
-d '{ | ||
"description": "Iris scikit-learn model", | ||
"name": "iris" | ||
}' | ||
``` | ||
|
||
Expected output: | ||
```bash | ||
{"createTimeSinceEpoch":"1709287882361","customProperties":{},"description":"Iris scikit-learn model","id":"1","lastUpdateTimeSinceEpoch":"1709287882361","name":"iris"} | ||
``` | ||
|
||
2. Register the first `ModelVersion` | ||
|
||
```bash | ||
curl --silent -X 'POST' \ | ||
"$MR_HOSTNAME/api/model_registry/v1alpha2/model_versions" \ | ||
-H 'accept: application/json' \ | ||
-H 'Content-Type: application/json' \ | ||
-d '{ | ||
"description": "Iris model version v1", | ||
"name": "v1", | ||
"registeredModelID": "1" | ||
}' | ||
``` | ||
|
||
Expected output: | ||
```bash | ||
{"createTimeSinceEpoch":"1709287890365","customProperties":{},"description":"Iris model version v1","id":"2","lastUpdateTimeSinceEpoch":"1709287890365","name":"v1"} | ||
``` | ||
|
||
3. Register the raw `ModelArtifact` | ||
|
||
This artifact defines where the actual trained model is stored, i.e., `gs://kfserving-examples/models/sklearn/1.0/model` | ||
|
||
```bash | ||
curl --silent -X 'POST' \ | ||
"$MR_HOSTNAME/api/model_registry/v1alpha2/model_versions/2/artifacts" \ | ||
-H 'accept: application/json' \ | ||
-H 'Content-Type: application/json' \ | ||
-d '{ | ||
"description": "Model artifact for Iris v1", | ||
"uri": "gs://kfserving-examples/models/sklearn/1.0/model", | ||
"state": "UNKNOWN", | ||
"name": "iris-model-v1", | ||
"modelFormatName": "sklearn", | ||
"modelFormatVersion": "1", | ||
"artifactType": "model-artifact" | ||
}' | ||
``` | ||
|
||
Expected output: | ||
```bash | ||
{"artifactType":"model-artifact","createTimeSinceEpoch":"1709287972637","customProperties":{},"description":"Model artifact for Iris v1","id":"1","lastUpdateTimeSinceEpoch":"1709287972637","modelFormatName":"sklearn","modelFormatVersion":"1","name":"iris-model-v1","state":"UNKNOWN","uri":"gs://kfserving-examples/models/sklearn/1.0/model"} | ||
``` | ||
|
||
> _NOTE_: double check the provided IDs are the expected ones. | ||
### Apply the `ClusterStorageContainer` resource | ||
|
||
Retrieve the model registry service and MLMD port: | ||
```bash | ||
MODEL_REGISTRY_SERVICE=model-registry-service | ||
MODEL_REGISTRY_REST_PORT=$(kubectl get svc/$MODEL_REGISTRY_SERVICE -n kubeflow --output jsonpath='{.spec.ports[0].targetPort}' ) | ||
``` | ||
|
||
Apply the cluster-scoped `ClusterStorageContainer` CR to setup configure the `model registry storage initilizer` for `model-registry://` URI formats. | ||
|
||
```bash | ||
kubectl apply -f - <<EOF | ||
apiVersion: "serving.kserve.io/v1alpha1" | ||
kind: ClusterStorageContainer | ||
metadata: | ||
name: mr-initializer | ||
spec: | ||
container: | ||
name: storage-initializer | ||
image: $IMG | ||
env: | ||
- name: MODEL_REGISTRY_BASE_URL | ||
value: "$MODEL_REGISTRY_SERVICE.kubeflow.svc.cluster.local:$MODEL_REGISTRY_REST_PORT" | ||
- name: MODEL_REGISTRY_SCHEME | ||
value: "http" | ||
resources: | ||
requests: | ||
memory: 100Mi | ||
cpu: 100m | ||
limits: | ||
memory: 1Gi | ||
cpu: "1" | ||
supportedUriFormats: | ||
- prefix: model-registry:// | ||
EOF | ||
``` | ||
|
||
> _NOTE_: as `$IMG` you could use either the one created during [env preparation](#environment-preparation) or any other remote img in the container registry. | ||
### Create an `InferenceService` | ||
|
||
1. Create a namespace | ||
```bash | ||
kubectl create namespace kserve-test | ||
``` | ||
|
||
2. Create the `InferenceService` | ||
```bash | ||
kubectl apply -n kserve-test -f - <<EOF | ||
apiVersion: "serving.kserve.io/v1beta1" | ||
kind: "InferenceService" | ||
metadata: | ||
name: "iris-model" | ||
spec: | ||
predictor: | ||
model: | ||
modelFormat: | ||
name: sklearn | ||
storageUri: "model-registry://iris/v1" | ||
EOF | ||
``` | ||
|
||
3. Check `InferenceService` status | ||
```bash | ||
kubectl get inferenceservices iris-model -n kserve-test | ||
``` | ||
|
||
4. Determine the ingress IP and ports | ||
|
||
```bash | ||
kubectl get svc istio-ingressgateway -n istio-system | ||
``` | ||
|
||
And then: | ||
```bash | ||
INGRESS_GATEWAY_SERVICE=$(kubectl get svc --namespace istio-system --selector="app=istio-ingressgateway" --output jsonpath='{.items[0].metadata.name}') | ||
kubectl port-forward --namespace istio-system svc/${INGRESS_GATEWAY_SERVICE} 8081:80 | ||
``` | ||
|
||
After that (in another terminal): | ||
```bash | ||
export INGRESS_HOST=localhost | ||
export INGRESS_PORT=8081 | ||
``` | ||
|
||
5. Perform the inference request | ||
|
||
Prepare the input data: | ||
```bash | ||
cat <<EOF > "/tmp/iris-input.json" | ||
{ | ||
"instances": [ | ||
[6.8, 2.8, 4.8, 1.4], | ||
[6.0, 3.4, 4.5, 1.6] | ||
] | ||
} | ||
EOF | ||
``` | ||
|
||
If you do not have DNS, you can still curl with the ingress gateway external IP using the HOST Header. | ||
```bash | ||
SERVICE_HOSTNAME=$(kubectl get inferenceservice iris-model -n kserve-test -o jsonpath='{.status.url}' | cut -d "/" -f 3) | ||
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" "http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/iris-v1:predict" -d @/tmp/iris-input.json | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
IMG ?= quay.io/${USER}/model-registry-storage-initializer:latest | ||
|
||
.PHONY: help | ||
help: ## Display this help. | ||
@awk 'BEGIN {FS = ":.*##"; printf "\nUsage:\n make \033[36m<target>\033[0m\n"} /^[a-zA-Z_0-9-]+:.*?##/ { printf " \033[36m%-15s\033[0m %s\n", $$1, $$2 } /^##@/ { printf "\n\033[1m%s\033[0m\n", substr($$0, 5) } ' $(MAKEFILE_LIST) | ||
|
||
##@ Development | ||
|
||
.PHONY: fmt | ||
fmt: ## Run go fmt against code. | ||
go fmt ./... | ||
|
||
.PHONY: vet | ||
vet: ## Run go vet against code. | ||
go vet ./... | ||
|
||
.PHONY: test | ||
test: fmt vet ## Run tests. | ||
go test ./... -coverprofile cover.out | ||
|
||
##@ Build | ||
|
||
.PHONY: build | ||
build: fmt vet ## Build binary. | ||
go build -o bin/mr-storage-initializer main.go | ||
|
||
.PHONY: run | ||
run: fmt vet ## Run the program | ||
go run ./main.go $(SOURCE_URI) $(DEST_PATH) | ||
|
||
.PHONY: docker-build | ||
docker-build: test ## Build docker image. | ||
docker build . -f ./Dockerfile -t ${IMG} | ||
|
||
.PHONY: docker-push | ||
docker-push: ## Push docker image. | ||
docker push ${IMG} |
Oops, something went wrong.