-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update discrete BCQ (JuliaReinforcementLearning#502)
Co-authored-by: Jun Tian <[email protected]>
- Loading branch information
1 parent
bf5c575
commit 3fe15b5
Showing
2 changed files
with
138 additions
and
0 deletions.
There are no files selected for viewing
137 changes: 137 additions & 0 deletions
137
src/ReinforcementLearningZoo/src/algorithms/offline_rl/DiscreteBCQ.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
export BCQDLearner | ||
|
||
""" | ||
BCQDLearner(;kwargs) | ||
See paper: [Benchmarking Batch Deep Reinforcement Learning Algorithms](https://arxiv.org/abs/1910.01708). | ||
# Keyword arguments | ||
- `approximator`::[`ActorCritic`](@ref): used to get Q-values (Critic) and logits (Actor) of a state. | ||
- `target_approximator`::[`ActorCritic`](@ref): similar to `approximator`, but used to estimate the target. | ||
- `γ::Float32 = 0.99f0`, reward discount rate. | ||
- `τ::Float32 = 0.005f0`, the speed at which the target network is updated. | ||
- `θ::Float32 = 0.99f0`, regularization coefficient. | ||
- `threshold::Float32 = 0.3f0`, determine whether the action can be used to calculate the Q value. | ||
- `batch_size::Int=32` | ||
- `update_freq::Int`: the frequency of updating the `approximator`. | ||
- `update_step::Int = 0` | ||
- `rng = Random.GLOBAL_RNG` | ||
""" | ||
mutable struct BCQDLearner{ | ||
Aq<:ActorCritic, | ||
At<:ActorCritic, | ||
R<:AbstractRNG, | ||
} <: AbstractLearner | ||
approximator::Aq | ||
target_approximator::At | ||
γ::Float32 | ||
τ::Float32 | ||
θ::Float32 | ||
threshold::Float32 | ||
batch_size::Int | ||
update_freq::Int | ||
update_step::Int | ||
rng::R | ||
# for logging | ||
actor_loss::Float32 | ||
critic_loss::Float32 | ||
end | ||
|
||
function BCQDLearner(; | ||
approximator::Aq, | ||
target_approximator::At, | ||
γ::Float32 = 0.99f0, | ||
τ::Float32 = 0.05f0, | ||
θ::Float32 = 1f-2, | ||
threshold::Float32 = 0.3f0, | ||
batch_size::Int = 32, | ||
update_freq::Int = 10, | ||
update_step::Int = 0, | ||
rng = Random.GLOBAL_RNG, | ||
) where {Aq<:ActorCritic, At<:ActorCritic} | ||
copyto!(approximator, target_approximator) | ||
BCQDLearner( | ||
approximator, | ||
target_approximator, | ||
γ, | ||
τ, | ||
θ, | ||
threshold, | ||
batch_size, | ||
update_freq, | ||
update_step, | ||
rng, | ||
0.0f0, | ||
0.0f0, | ||
) | ||
end | ||
|
||
Flux.functor(x::BCQDLearner) = (Q = x.approximator, Qₜ = x.target_approximator), | ||
y -> begin | ||
x = @set x.approximator = y.Q | ||
x = @set x.target_approximator = y.Qₜ | ||
x | ||
end | ||
|
||
function (learner::BCQDLearner)(env) | ||
s = state(env) | ||
s = Flux.unsqueeze(s, ndims(s) + 1) | ||
s = send_to_device(device(learner), s) | ||
q = learner.approximator.critic(s) | ||
prob = softmax(learner.approximator.actor(s), dims=1) | ||
mask = Float32.((prob ./ maximum(prob, dims=1)) .> learner.threshold) | ||
new_q = q .* mask .+ (1.0f0 .- mask) .* -1f8 | ||
new_q |> vec |> send_to_host | ||
end | ||
|
||
function RLBase.update!(learner::BCQDLearner, batch::NamedTuple) | ||
AC = learner.approximator | ||
target_AC = learner.target_approximator | ||
γ, τ, θ = learner.γ, learner.τ, learner.θ | ||
batch_size = learner.batch_size | ||
D = device(AC) | ||
|
||
s, a, r, t, s′ = (send_to_device(D, batch[x]) for x in SARTS) | ||
a = CartesianIndex.(a, 1:batch_size) | ||
r = reshape(r, :, batch_size) | ||
t = reshape(t, :, batch_size) | ||
|
||
prob = softmax(AC.actor(s′)) | ||
mask = Float32.((prob ./ maximum(prob, dims=1)) .> learner.threshold) | ||
q′ = AC.critic(s′) | ||
a′ = argmax(q′ .* mask .+ (1.0f0 .- mask) .* -1f8, dims=1) | ||
target_q = target_AC.critic(s′) | ||
|
||
target = r .+ γ .* (1 .- t) .* target_q[a′] | ||
|
||
ps = Flux.params(AC) | ||
gs = gradient(ps) do | ||
# Critic loss | ||
q_t = AC.critic(s) | ||
qa_t = reshape(q_t[a], :, batch_size) | ||
critic_loss = Flux.Losses.huber_loss(qa_t, target) | ||
|
||
# Actor loss | ||
logit = AC.actor(s) | ||
log_prob = -log.(softmax(logit, dims=1)) | ||
actor_loss = mean(log_prob[a]) | ||
|
||
ignore() do | ||
learner.actor_loss = actor_loss | ||
learner.critic_loss = critic_loss | ||
end | ||
|
||
actor_loss + critic_loss + θ * mean(logit .^ 2) | ||
end | ||
|
||
update!(AC, gs) | ||
|
||
# polyak averaging | ||
for (dest, src) in zip( | ||
Flux.params([learner.target_approximator]), | ||
Flux.params([learner.approximator]), | ||
) | ||
dest .= (1 - τ) .* dest .+ τ .* src | ||
end | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters