title | summary |
---|---|
Paginate Results |
Introduce paginate result feature in TiDB. |
To page through a large query result, you can get your desired part in a "paginated" manner.
In TiDB, you can paginate query results using the LIMIT
statement. For example:
SELECT * FROM table_a t ORDER BY gmt_modified DESC LIMIT offset, row_count;
offset
indicates the beginning number of records and row_count
indicates the number of records per page. TiDB also supports LIMIT row_count OFFSET offset
syntax.
When pagination is used, it is recommended that you sort query results with the ORDER BY
statement unless there is a need to display data randomly.
For example, to let users of the Bookshop application view the latest published books in a paginated manner, you can use the LIMIT 0, 10
statement, which returns the first page of the result list, with a maximum of 10 records per page. To get the second page, you can change the statement to LIMIT 10, 10
.
SELECT *
FROM books
ORDER BY published_at DESC
LIMIT 0, 10;
In application development, the backend program receives the page_number
parameter (which means the number of the page being requested) and the page_size
parameter (which controls how many records per page) from the frontend instead of the offset
parameter. Therefore, some conversions needed to be done before querying.
public List<Book> getLatestBooksPage(Long pageNumber, Long pageSize) throws SQLException {
pageNumber = pageNumber < 1L ? 1L : pageNumber;
pageSize = pageSize < 10L ? 10L : pageSize;
Long offset = (pageNumber - 1) * pageSize;
Long limit = pageSize;
List<Book> books = new ArrayList<>();
try (Connection conn = ds.getConnection()) {
PreparedStatement stmt = conn.prepareStatement("""
SELECT id, title, published_at
FROM books
ORDER BY published_at DESC
LIMIT ?, ?;
""");
stmt.setLong(1, offset);
stmt.setLong(2, limit);
ResultSet rs = stmt.executeQuery();
while (rs.next()) {
Book book = new Book();
book.setId(rs.getLong("id"));
book.setTitle(rs.getString("title"));
book.setPublishedAt(rs.getDate("published_at"));
books.add(book);
}
}
return books;
}
Usually, you can write a pagination SQL statement using a primary key or unique index to sort results and the offset
keyword in the LIMIT
clause to split pages by a specified row count. Then the pages are wrapped into independent transactions to achieve flexible paging updates. However, the disadvantage is also obvious. As the primary key or unique index needs to be sorted, a larger offset consumes more computing resources, especially in the case of a large volume of data.
The following introduces a more efficient paging batching method:
First, sort the data by primary key and call the window function row_number()
to generate a row number for each row. Then, call the aggregation function to group row numbers by the specified page size and calculate the minimum and maximum values of each page.
SELECT
floor((t.row_num - 1) / 1000) + 1 AS page_num,
min(t.id) AS start_key,
max(t.id) AS end_key,
count(*) AS page_size
FROM (
SELECT id, row_number() OVER (ORDER BY id) AS row_num
FROM books
) t
GROUP BY page_num
ORDER BY page_num;
The result is as follows:
+----------+------------+------------+-----------+
| page_num | start_key | end_key | page_size |
+----------+------------+------------+-----------+
| 1 | 268996 | 213168525 | 1000 |
| 2 | 213210359 | 430012226 | 1000 |
| 3 | 430137681 | 647846033 | 1000 |
| 4 | 647998334 | 848878952 | 1000 |
| 5 | 848899254 | 1040978080 | 1000 |
...
| 20 | 4077418867 | 4294004213 | 1000 |
+----------+------------+------------+-----------+
20 rows in set (0.01 sec)
Next, use the WHERE id BETWEEN start_key AND end_key
statement to query the data of each slice. To update data more efficiently, you can use the above slice information when modifying the data.
To delete the basic information of all books on page 1, replace the start_key
and end_key
with values of page 1 in the above result:
DELETE FROM books
WHERE
id BETWEEN 268996 AND 213168525
ORDER BY id;
In Java, define a PageMeta
class to store page meta information.
public class PageMeta<K> {
private Long pageNum;
private K startKey;
private K endKey;
private Long pageSize;
// Skip the getters and setters.
}
Define a getPageMetaList()
method to get the page meta information list, and then define a deleteBooksByPageMeta()
method to delete data in batches according to the page meta information.
public class BookDAO {
public List<PageMeta<Long>> getPageMetaList() throws SQLException {
List<PageMeta<Long>> pageMetaList = new ArrayList<>();
try (Connection conn = ds.getConnection()) {
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("""
SELECT
floor((t.row_num - 1) / 1000) + 1 AS page_num,
min(t.id) AS start_key,
max(t.id) AS end_key,
count(*) AS page_size
FROM (
SELECT id, row_number() OVER (ORDER BY id) AS row_num
FROM books
) t
GROUP BY page_num
ORDER BY page_num;
""");
while (rs.next()) {
PageMeta<Long> pageMeta = new PageMeta<>();
pageMeta.setPageNum(rs.getLong("page_num"));
pageMeta.setStartKey(rs.getLong("start_key"));
pageMeta.setEndKey(rs.getLong("end_key"));
pageMeta.setPageSize(rs.getLong("page_size"));
pageMetaList.add(pageMeta);
}
}
return pageMetaList;
}
public void deleteBooksByPageMeta(PageMeta<Long> pageMeta) throws SQLException {
try (Connection conn = ds.getConnection()) {
PreparedStatement stmt = conn.prepareStatement("DELETE FROM books WHERE id >= ? AND id <= ?");
stmt.setLong(1, pageMeta.getStartKey());
stmt.setLong(2, pageMeta.getEndKey());
stmt.executeUpdate();
}
}
}
The following statement is to delete the data on page 1:
List<PageMeta<Long>> pageMetaList = bookDAO.getPageMetaList();
if (pageMetaList.size() > 0) {
bookDAO.deleteBooksByPageMeta(pageMetaList.get(0));
}
The following statement is to delete all book data in batches by paging:
List<PageMeta<Long>> pageMetaList = bookDAO.getPageMetaList();
pageMetaList.forEach((pageMeta) -> {
try {
bookDAO.deleteBooksByPageMeta(pageMeta);
} catch (SQLException e) {
e.printStackTrace();
}
});
This method significantly improves the efficiency of batch processing by avoiding wasting computing resources caused by frequent data sorting operations.
For non-clustered index tables (also known as "non-index-organized tables"), the internal field _tidb_rowid
can be used as a pagination key, and the pagination method is the same as that of single-field primary key tables.
Tip:
You can use the
SHOW CREATE TABLE users;
statement to check whether the table primary key uses clustered index.
For example:
SELECT
floor((t.row_num - 1) / 1000) + 1 AS page_num,
min(t._tidb_rowid) AS start_key,
max(t._tidb_rowid) AS end_key,
count(*) AS page_size
FROM (
SELECT _tidb_rowid, row_number () OVER (ORDER BY _tidb_rowid) AS row_num
FROM users
) t
GROUP BY page_num
ORDER BY page_num;
The result is as follows:
+----------+-----------+---------+-----------+
| page_num | start_key | end_key | page_size |
+----------+-----------+---------+-----------+
| 1 | 1 | 1000 | 1000 |
| 2 | 1001 | 2000 | 1000 |
| 3 | 2001 | 3000 | 1000 |
| 4 | 3001 | 4000 | 1000 |
| 5 | 4001 | 5000 | 1000 |
| 6 | 5001 | 6000 | 1000 |
| 7 | 6001 | 7000 | 1000 |
| 8 | 7001 | 8000 | 1000 |
| 9 | 8001 | 9000 | 1000 |
| 10 | 9001 | 9990 | 990 |
+----------+-----------+---------+-----------+
10 rows in set (0.00 sec)
For clustered index tables (also known as "index-organized tables"), you can use the concat
function to concatenate values of multiple columns as a key, and then use a window function to query the paging information.
It should be noted that the key is a string at this time, and you must ensure that the length of the string is always the same, to obtain the correct start_key
and end_key
in the slice through the min
and max
aggregation function. If the length of the field for string concatenation is not fixed, you can use the LPAD
function to pad it.
For example, you can implement a paging batch for the data in the ratings
table as follows:
Create the meta information table by using the following statement. As the key concatenated by book_id
and user_id
, which are bigint
types, is unable to convert to the same length, the LPAD
function is used to pad the length with 0
according to the maximum bits 19 of bigint
.
SELECT
floor((t1.row_num - 1) / 10000) + 1 AS page_num,
min(mvalue) AS start_key,
max(mvalue) AS end_key,
count(*) AS page_size
FROM (
SELECT
concat('(', LPAD(book_id, 19, 0), ',', LPAD(user_id, 19, 0), ')') AS mvalue,
row_number() OVER (ORDER BY book_id, user_id) AS row_num
FROM ratings
) t1
GROUP BY page_num
ORDER BY page_num;
Note:
The preceding SQL statement is executed as
TableFullScan
. When the data volume is large, the query will be slow, and you can use TiFlash to speed up it.
The result is as follows:
+----------+-------------------------------------------+-------------------------------------------+-----------+
| page_num | start_key | end_key | page_size |
+----------+-------------------------------------------+-------------------------------------------+-----------+
| 1 | (0000000000000268996,0000000000092104804) | (0000000000140982742,0000000000374645100) | 10000 |
| 2 | (0000000000140982742,0000000000456757551) | (0000000000287195082,0000000004053200550) | 10000 |
| 3 | (0000000000287196791,0000000000191962769) | (0000000000434010216,0000000000237646714) | 10000 |
| 4 | (0000000000434010216,0000000000375066168) | (0000000000578893327,0000000002167504460) | 10000 |
| 5 | (0000000000578893327,0000000002457322286) | (0000000000718287668,0000000001502744628) | 10000 |
...
| 29 | (0000000004002523918,0000000000902930986) | (0000000004147203315,0000000004090920746) | 10000 |
| 30 | (0000000004147421329,0000000000319181561) | (0000000004294004213,0000000003586311166) | 9972 |
+----------+-------------------------------------------+-------------------------------------------+-----------+
30 rows in set (0.28 sec)
To delete all rating records on page 1, replace the start_key
and end_key
with values of page 1 in the above result:
SELECT * FROM ratings
WHERE
(book_id > 268996 AND book_id < 140982742)
OR (
book_id = 268996 AND user_id >= 92104804
)
OR (
book_id = 140982742 AND user_id <= 374645100
)
ORDER BY book_id, user_id;
Ask the community on Discord or Slack, or submit a support ticket.
Ask the community on Discord or Slack, or submit a support ticket.