Mutation-Attention Model
- Clone muat repository
- Go to muat repository
- Create conda environment
conda env create -f muat-conda.yml
- activate muat environment
conda activate muat
- Download genome reference to ./ref:
wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz -O ./ref/ref.gz
gunzip ./ref/ref.gz
- Make sure that preprocessing/dmm/annotate_mutations_with_bed.sh is permitted to be executed.
chmod 755 preprocessing/dmm/annotate_mutations_with_bed.sh
- Look at the example file in ./extfile/example_for_alldata_prediction_gz.tsv file. This lists all files which will be predicted by the model
- Run this code
python3 main.py --dataloader 'pcawg' --predict-filepath '/path/to/muat/extfile/example_for_alldata_prediction_gz.tsv' --reference-h19 '/path/to/muat/ref/ref' --load-ckpt-file '/path/to/muat/bestckpt/wgs/ensemble/finalpcawgFeaturefold1_11110_wpos_TripletPositionF_bs5000_nl2_nh2_ne256_cl3/new_weight.pthx' --output-pred-dir '/path/to/muat/data/raw/output/' --predict-all
- If it succeed, you can see all preprocessed files in /path/to/muat/data/raw/temp/
- and all prediction outputs in --output-pred-dir
- Download genome reference GRCh38
wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/GRCh38_full_analysis_set_plus_decoy_hla.fa -O ./ref/ref_hg38
- add --convert-hg38-hg19 and --reference-h38 parser
python3 main.py --dataloader 'pcawg' --predict-filepath '/path/to/muat/extfile/example_for_alldata_prediction_gz.tsv' --reference-h19 '/path/to/muat/ref/ref' --load-ckpt-file '/path/to/muat/bestckpt/wgs/ensemble/finalpcawgFeaturefold1_11110_wpos_TripletPositionF_bs5000_nl2_nh2_ne256_cl3/new_weight.pthx' --output-pred-dir '/path/to/muat/data/raw/output/' --predict-all --convert-hg38-hg19 --reference-h38 '/path/to/muat/ref/ref_hg38'
Whole Genome Sequence (trained on PCAWG) : for the best results, input type should be the same as pretrained models type
Model | Description | Link |
---|---|---|
SNV | Model trained on SNV input | Download |
SNV+MNV | Model trained on SNV+MNV input | Download |
SNV+MNV+indels | Model trained on SNV+MNV+indels input | Download |
SNV+MNV+indels+SV/MEI | Model trained on SNV+MNV+indels+SV/MEI input | Download |
SNV+pos | Model trained on SNV+pos input | Download |
SNV+indel+pos | Model trained on SNV+indel+pos input | Download |
SNV+MNV+indel+SV/MEI+pos | Model trained on SNV+MNV+indel+SV/MEI+pos input | Download |
Model | Description | Link |
---|---|---|
SNV+MNV | Model trained on SNV+MNV input | Download |
Read README_training.md