- Offline Table
- Throttle Model
- Brake Model
- Online Model
- Throttle Model
- Brake Model
carCalibration will show you how to build a data-driven longitudinal control system by machine-learning.
- numpy >= 1.15.4
- pandas >= 0.22.0
- scipy >= 1.2.0
- tensorflow >= 1.7.0
- keras >= 2.1.6
- python3
- matplotlib >= 2.2.2
- plotly >= 2.5.1
- From Pacmod You need accel, brake, speed, steer, leftWheelSpeed, rightWheelSpeed
%time | accel([0, 1]) | brake([0, 1]) | speed[m/s] | steer[rad] | leftWheelSpeed[rad/s] | rightWheelSpeed[rad/s] |
---|---|---|---|---|---|---|
0 | 0 | 0.4 | 0 | 0.2 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... |
- From Imu You need x, y, z direction acceleration and pitch angle
%time | x[m/s^2] | y[m/s^2] | z[m/s^2] | pitch[rad] |
---|---|---|---|---|
0 | 0 | 0 | -9.8 | 0 |
.... | .... | .... | .... | .... |
- Prepare your csv File
- copy csv file under the data directory
- run the following command
python src/main.py
- Result will output in the 'result/' directory
- Output csv file will be below. You will get two type csv. (Brake and Throttle)
command(Throttle or Brake) | speed[m/s] | accceleration[m/s^2] |
---|---|---|
0.0 | 0 | 0.0 |
.... | .... | .... |