-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add kernels for various linear algebra operations (#310)
Add kernels for: - inner product of two `StencilVector` objects belonging to the same space (still called `dot` for now); - `axpy` operation `y = a * x + y` of `StencilVectorSpace`, where `(x, y)` are `StencilVector` objects and `a` is scalar; - Matrix-vector product of `StencilMatrix` (called `dot`). --------- Co-authored-by: Yaman Güçlü <[email protected]> Co-authored-by: tomcaruso <tomarthur,caruso@gmail,com>
- Loading branch information
1 parent
02d1bf7
commit 56c9d4e
Showing
12 changed files
with
1,027 additions
and
561 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
from pyccel.decorators import template | ||
|
||
#======================================================================================================== | ||
@template(name='Tarray', types=['float[:]', 'complex[:]']) | ||
@template(name='T', types=['float', 'complex']) | ||
def axpy_1d(alpha: 'T', x: "Tarray", y: "Tarray"): | ||
""" | ||
Kernel for computing y = alpha * x + y. | ||
Parameters | ||
---------- | ||
alpha : float | complex | ||
Scaling coefficient. | ||
x, y : 1D Numpy arrays of (float | complex) data | ||
Data of the vectors. | ||
""" | ||
n1, = x.shape | ||
for i1 in range(n1): | ||
y[i1] += alpha * x[i1] | ||
|
||
#======================================================================================================== | ||
@template(name='Tarray', types=['float[:,:]', 'complex[:,:]']) | ||
@template(name='T', types=['float', 'complex']) | ||
def axpy_2d(alpha: 'T', x: "Tarray", y: "Tarray"): | ||
""" | ||
Kernel for computing y = alpha * x + y. | ||
Parameters | ||
---------- | ||
alpha : float | complex | ||
Scaling coefficient. | ||
x, y : 2D Numpy arrays of (float | complex) data | ||
Data of the vectors. | ||
""" | ||
n1, n2 = x.shape | ||
for i1 in range(n1): | ||
for i2 in range(n2): | ||
y[i1, i2] += alpha * x[i1, i2] | ||
|
||
#======================================================================================================== | ||
@template(name='Tarray', types=['float[:,:,:]', 'complex[:,:,:]']) | ||
@template(name='T', types=['float', 'complex']) | ||
def axpy_3d(alpha: 'T', x: "Tarray", y: "Tarray"): | ||
""" | ||
Kernel for computing y = alpha * x + y. | ||
Parameters | ||
---------- | ||
alpha : float | complex | ||
Scaling coefficient. | ||
x, y : 3D Numpy arrays of (float | complex) data | ||
Data of the vectors. | ||
""" | ||
n1, n2, n3 = x.shape | ||
for i1 in range(n1): | ||
for i2 in range(n2): | ||
for i3 in range(n3): | ||
y[i1, i2, i3] += alpha * x[i1, i2, i3] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
from pyccel.decorators import template | ||
|
||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!# | ||
#!!!!!!!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!!!!# | ||
#!!!!!!! Conjugate on the first argument !!!!!!!# | ||
#!!!!!!!!!! This will need an update !!!!!!!!!!!# | ||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!# | ||
|
||
#============================================================================== | ||
@template(name='T', types=['float[:]', 'complex[:]']) | ||
def inner_1d(v1: 'T', v2: 'T', nghost0: 'int64'): | ||
""" | ||
Kernel for computing the inner product (case of two 1D vectors). | ||
Parameters | ||
---------- | ||
v1, v2 : 1D NumPy array | ||
Data of the vectors from which we are computing the inner product. | ||
nghost0 : int | ||
Number of ghost cells of the arrays along the index 0. | ||
Returns | ||
------- | ||
res : scalar | ||
Scalar (real or complex) containing the result of the inner product. | ||
""" | ||
shape0, = v1.shape | ||
|
||
res = v1[0] - v1[0] | ||
for i0 in range(nghost0, shape0 - nghost0): | ||
res += v1[i0].conjugate() * v2[i0] | ||
|
||
return res | ||
|
||
#============================================================================== | ||
@template(name='T', types=['float[:,:]', 'complex[:,:]']) | ||
def inner_2d(v1: 'T', v2: 'T', nghost0: 'int64', nghost1: 'int64'): | ||
""" | ||
Kernel for computing the inner product (case of two 2D vectors). | ||
Parameters | ||
---------- | ||
v1, v2 : 2D NumPy array | ||
Data of the vectors from which we are computing the inner product. | ||
nghost0 : int | ||
Number of ghost cells of the arrays along the index 0. | ||
nghost1 : int | ||
Number of ghost cells of the arrays along the index 1. | ||
Returns | ||
------- | ||
res : scalar | ||
Scalar (real or complex) containing the result of the inner product. | ||
""" | ||
shape0, shape1 = v1.shape | ||
|
||
res = v1[0, 0] - v1[0, 0] | ||
for i0 in range(nghost0, shape0 - nghost0): | ||
for i1 in range(nghost1, shape1 - nghost1): | ||
res += v1[i0, i1].conjugate() * v2[i0, i1] | ||
|
||
return res | ||
|
||
#============================================================================== | ||
@template(name='T', types=['float[:,:,:]', 'complex[:,:,:]']) | ||
def inner_3d(v1: 'T', v2: 'T', nghost0: 'int64', nghost1: 'int64', nghost2: 'int64'): | ||
""" | ||
Kernel for computing the inner product (case of two 3D vectors). | ||
Parameters | ||
---------- | ||
v1, v2 : 3D NumPy array | ||
Data of the vectors from which we are computing the inner product. | ||
nghost0 : int | ||
Number of ghost cells of the arrays along the index 0. | ||
nghost1 : int | ||
Number of ghost cells of the arrays along the index 1. | ||
nghost2 : int | ||
Number of ghost cells of the arrays along the index 2. | ||
Returns | ||
------- | ||
res : scalar | ||
Scalar (real or complex) containing the result of the inner product. | ||
""" | ||
shape0, shape1, shape2 = v1.shape | ||
|
||
res = v1[0, 0, 0] - v1[0, 0, 0] | ||
for i0 in range(nghost0, shape0 - nghost0): | ||
for i1 in range(nghost1, shape1 - nghost1): | ||
for i2 in range(nghost2, shape2 - nghost2): | ||
res += v1[i0, i1, i2].conjugate() * v2[i0, i1, i2] | ||
|
||
return res |
Oops, something went wrong.