-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added bipartite pooling operator from `"DeepTreeGANv2: Iterative Pool…
…ing of Point Clouds" <https://arxiv.org/abs/2312.00042>`.
- Loading branch information
Showing
4 changed files
with
162 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
import torch | ||
|
||
from torch_geometric import nn | ||
|
||
|
||
def test_bipartite_pooling(): | ||
num_nodes = 100 | ||
ratio = 10 | ||
in_channels = 5 | ||
out_channels = 8 | ||
num_graphs = 4 | ||
kw = dict(in_channels=in_channels, out_channels=out_channels) | ||
|
||
gnnlist = [ | ||
nn.GINConv(torch.nn.Linear(in_channels, out_channels)), | ||
# nn.GENConv(**kw), # gradient test breaks | ||
nn.GeneralConv(**kw), | ||
nn.GraphConv(**kw), | ||
nn.MFConv(**kw), | ||
# nn.SimpleConv(), # gradient test breaks | ||
nn.SAGEConv(**kw), | ||
nn.WLConvContinuous(), | ||
nn.GATv2Conv(add_self_loops=False, **kw), | ||
nn.GATConv(add_self_loops=False, **kw), | ||
] | ||
batch = torch.arange(num_graphs).repeat_interleave(num_nodes) | ||
for gnn in gnnlist: | ||
|
||
pool = nn.BipartitePooling(in_channels, ratio=ratio, gnn=gnn) | ||
|
||
x = torch.randn((num_graphs * num_nodes, in_channels)).requires_grad_() | ||
x.retain_grad() | ||
out, new_batchidx = pool(x, batch) | ||
|
||
if isinstance(gnn, (nn.SimpleConv, nn.WLConvContinuous)): | ||
assert out.shape == torch.Size([num_graphs * ratio, in_channels]) | ||
else: | ||
assert out.shape == torch.Size([num_graphs * ratio, out_channels]) | ||
|
||
for grad_graph in range(num_graphs): | ||
|
||
out[new_batchidx == grad_graph].sum().backward(retain_graph=True) | ||
# only graph igraph gets a gradient | ||
for check_graph in range(num_graphs): | ||
grad_grap_i = x.grad[batch == check_graph].abs().sum(1) | ||
if grad_graph == check_graph: | ||
assert (grad_grap_i > 0).all() | ||
else: | ||
assert (grad_grap_i == 0).all() | ||
|
||
x.grad.zero_() | ||
# all seed nodes get a gradient | ||
assert (pool.seed_nodes.grad.abs().sum(1) > 0).all() | ||
pool.seed_nodes.grad.zero_() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
from typing import Tuple | ||
|
||
import torch | ||
from torch import Tensor | ||
|
||
from torch_geometric.typing import OptTensor | ||
|
||
|
||
class BipartitePooling(torch.nn.Module): | ||
r"""The bipartite pooling operator from the `"DeepTreeGANv2: Iterative | ||
Pooling of Point Clouds" <https://arxiv.org/abs/2312.00042>`_ paper. | ||
The Pooling layer constructs a dense bipartite graph between the input | ||
nodes and the "Seed" nodes that are trainable parameters of the layer. | ||
Args: | ||
in_channels (int): Size of each input sample. | ||
ratio (int): Number of seed nodes | ||
gnn (torch.nn.Module): A graph neural network layer that | ||
implements the bipartite messages passing methode, such as | ||
:class:`torch_geometric.nn.conv.GATv2Conv`, | ||
:class:`torch_geometric.nn.conv.GATConv`. | ||
:class:`torch_geometric.nn.conv.GINConv`, | ||
:class:`torch_geometric.nn.conv.GeneralConv`, | ||
:class:`torch_geometric.nn.conv.GraphConv`, | ||
:class:`torch_geometric.nn.conv.MFConv`, | ||
:class:`torch_geometric.nn.conv.SAGEConv`, | ||
:class:`torch_geometric.nn.conv.WLConvContinuous`, | ||
Recommended: `:class:`torch_geometric.nn.conv.GATv2Conv` | ||
with `add_self_loops=False`. | ||
Shapes: | ||
- **inputs:** | ||
node features :math:`(|\mathcal{V}|, F_{in})`, | ||
batch :math:`(|\mathcal{V}|)` | ||
- **outputs:** | ||
node features (`ratio`, :math:`F_{out}`) | ||
batch (`"ratio"`) | ||
""" | ||
def __init__( | ||
self, | ||
in_channels: int, | ||
ratio: int, | ||
gnn: torch.nn.Module, | ||
**kwargs, | ||
): | ||
super().__init__() | ||
|
||
self.in_channels = in_channels | ||
self.ratio = ratio | ||
|
||
self.seed_nodes = torch.nn.Parameter( | ||
torch.empty(size=(self.ratio, self.in_channels))) | ||
self.gnn = gnn | ||
|
||
self.reset_parameters() | ||
|
||
def reset_parameters(self): | ||
r"""Resets all learnable parameters of the module.""" | ||
self.gnn.reset_parameters() | ||
self.seed_nodes.data.normal_() | ||
|
||
def forward( | ||
self, | ||
x: Tensor, | ||
batch: OptTensor = None, | ||
) -> Tuple[Tensor, Tensor]: | ||
r"""Forward pass. | ||
Args: | ||
x (torch.Tensor): The node feature matrix. | ||
batch (torch.Tensor, optional): The batch vector | ||
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns | ||
each node to a specific example. (default: :obj:`None`) | ||
""" | ||
if batch is None: | ||
batch = torch.zeros((x.size(0)), dtype=torch.long).to(x.device) | ||
batch_size = batch.max() + 1 | ||
|
||
x_aggrs = self.seed_nodes.repeat(batch_size, 1) | ||
|
||
source_graph_size = len(x) | ||
|
||
source = torch.arange(source_graph_size, device=x.device, | ||
dtype=torch.long).repeat_interleave(self.ratio) | ||
|
||
target = torch.arange(self.ratio, device=x.device, | ||
dtype=torch.long).repeat(source_graph_size) | ||
target += batch.repeat_interleave(self.ratio) * self.ratio | ||
|
||
out = self.gnn( | ||
x=(x, x_aggrs), | ||
edge_index=torch.vstack([source, target]), | ||
# size=(len(x), self.ratio * int(batch_size)), | ||
) | ||
|
||
new_batchidx = torch.arange(batch_size, dtype=torch.long, | ||
device=x.device).repeat_interleave( | ||
self.ratio) | ||
|
||
return (out, new_batchidx) | ||
|
||
def __repr__(self) -> str: | ||
return (f'{self.__class__.__name__}({self.gnn.__class__.__name__}, ' | ||
f'{self.in_channels}, {self.ratio})') |