-
-
Notifications
You must be signed in to change notification settings - Fork 2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5352798
commit 4cf7d0c
Showing
1 changed file
with
302 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,302 @@ | ||
# Copyright 2024 The PyMC Developers | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from collections.abc import Mapping, MutableMapping, Sequence | ||
from typing import Any | ||
|
||
import numcodecs | ||
import numpy as np | ||
import zarr | ||
|
||
from pytensor.tensor.variable import TensorVariable | ||
from zarr.storage import BaseStore | ||
from zarr.sync import Synchronizer | ||
|
||
from pymc.backends.arviz import ( | ||
coords_and_dims_for_inferencedata, | ||
find_constants, | ||
find_observations, | ||
) | ||
from pymc.backends.base import BaseTrace | ||
from pymc.model.core import Model, modelcontext | ||
from pymc.step_methods.compound import ( | ||
BlockedStep, | ||
CompoundStep, | ||
StatsBijection, | ||
get_stats_dtypes_shapes_from_steps, | ||
) | ||
from pymc.util import get_default_varnames | ||
|
||
|
||
class ZarrChain(BaseTrace): | ||
def __init__( | ||
self, | ||
store: BaseStore | MutableMapping, | ||
stats_bijection: StatsBijection, | ||
synchronizer: Synchronizer | None = None, | ||
model: Model | None = None, | ||
vars: Sequence[TensorVariable] | None = None, | ||
test_point: Sequence[dict[str, np.ndarray]] | None = None, | ||
): | ||
super().__init__(name="zarr", model=model, vars=vars, test_point=test_point) | ||
self.draw_idx = 0 | ||
self._posterior = zarr.open_group( | ||
store, synchronizer=synchronizer, path="posterior", mode="a" | ||
) | ||
self._sample_stats = zarr.open_group( | ||
store, synchronizer=synchronizer, path="sample_stats", mode="a" | ||
) | ||
self._sampling_state = zarr.open_group( | ||
store, synchronizer=synchronizer, path="_sampling_state", mode="a" | ||
) | ||
self.stats_bijection = stats_bijection | ||
|
||
def setup(self, draws: int, chain: int, sampler_vars: Sequence[dict] | None): # type: ignore[override] | ||
self.chain = chain | ||
|
||
def record(self, draw: Mapping[str, np.ndarray], stats: Sequence[Mapping[str, Any]]): | ||
chain = self.chain | ||
draw_idx = self.draw_idx | ||
for var_name, var_value in zip(self.varnames, self.fn(draw)): | ||
self._posterior[var_name].set_orthogonal_selection( | ||
(chain, draw_idx), | ||
var_value, | ||
) | ||
for var_name, var_value in self.stats_bijection.map(stats).items(): | ||
self._sample_stats[var_name].set_orthogonal_selection( | ||
(chain, draw_idx), | ||
var_value, | ||
) | ||
self.draw_idx += 1 | ||
|
||
def record_sampling_state(self, step): | ||
self._sampling_state.sampling_state.set_coordinate_selection( | ||
self.chain, np.array([step.sampling_state], dtype="object") | ||
) | ||
self._sampling_state.draw_idx.set_coordinate_selection(self.chain, self.draw_idx) | ||
|
||
|
||
FILL_VALUE_TYPE = float | int | bool | str | np.datetime64 | np.timedelta64 | None | ||
|
||
|
||
def get_fill_value_and_codec( | ||
dtype: Any, | ||
) -> tuple[FILL_VALUE_TYPE, np.typing.DTypeLike, numcodecs.abc.Codec | None]: | ||
_dtype = np.dtype(dtype) | ||
if np.issubdtype(_dtype, np.floating): | ||
return (np.nan, _dtype, None) | ||
elif np.issubdtype(_dtype, np.integer): | ||
return (-1_000_000, _dtype, None) | ||
elif np.issubdtype(_dtype, "bool"): | ||
return (False, _dtype, None) | ||
elif np.issubdtype(_dtype, "str"): | ||
return ("", _dtype, None) | ||
elif np.issubdtype(_dtype, "datetime64"): | ||
return (np.datetime64(0, "Y"), _dtype, None) | ||
elif np.issubdtype(_dtype, "timedelta64"): | ||
return (np.timedelta64(0, "Y"), _dtype, None) | ||
else: | ||
return (None, _dtype, numcodecs.Pickle()) | ||
|
||
|
||
class ZarrTrace: | ||
def __init__( | ||
self, | ||
store: BaseStore | MutableMapping | None = None, | ||
synchronizer: Synchronizer | None = None, | ||
model: Model | None = None, | ||
vars: Sequence[TensorVariable] | None = None, | ||
include_transformed: bool = False, | ||
): | ||
model = modelcontext(model) | ||
self.model = model | ||
|
||
self.synchronizer = synchronizer | ||
self.root = zarr.group( | ||
store=store, | ||
overwrite=True, | ||
synchronizer=synchronizer, | ||
) | ||
self.coords, self.vars_to_dims = coords_and_dims_for_inferencedata(model) | ||
|
||
if vars is None: | ||
vars = model.unobserved_value_vars | ||
|
||
unnamed_vars = {var for var in vars if var.name is None} | ||
if unnamed_vars: | ||
raise Exception(f"Can't trace unnamed variables: {unnamed_vars}") | ||
self.varnames = get_default_varnames( | ||
[var.name for var in vars], include_transformed=include_transformed | ||
) | ||
self.vars = [var for var in vars if var.name in self.varnames] | ||
|
||
self.fn = model.compile_fn(self.vars, inputs=model.value_vars, on_unused_input="ignore") | ||
|
||
# Get variable shapes. Most backends will need this | ||
# information. | ||
test_point = model.initial_point() | ||
var_values = list(zip(self.varnames, self.fn(test_point))) | ||
self.var_dtype_shapes = {var: (value.dtype, value.shape) for var, value in var_values} | ||
self._is_base_setup = False | ||
|
||
@property | ||
def posterior(self): | ||
return self.root.posterior | ||
|
||
@property | ||
def sample_stats(self): | ||
return self.root.sample_stats | ||
|
||
@property | ||
def constant_data(self): | ||
return self.root.constant_data | ||
|
||
@property | ||
def observed_data(self): | ||
return self.root.observed_data | ||
|
||
@property | ||
def sampling_state(self): | ||
return self.root.sampling_state | ||
|
||
def init_trace(self, chains: int, draws: int, step: BlockedStep | CompoundStep): | ||
self.create_group( | ||
name="constant_data", | ||
data_dict=find_constants(self.model), | ||
) | ||
|
||
self.create_group( | ||
name="observed_data", | ||
data_dict=find_observations(self.model), | ||
) | ||
|
||
self.init_group_with_empty( | ||
group=self.root.create_group(name="posterior", overwrite=True), | ||
var_dtype_and_shape=self.var_dtype_shapes, | ||
chains=chains, | ||
draws=draws, | ||
) | ||
stats_dtypes_shapes = get_stats_dtypes_shapes_from_steps( | ||
[step] if isinstance(step, BlockedStep) else step.methods | ||
) | ||
self.init_group_with_empty( | ||
group=self.root.create_group(name="sample_stats", overwrite=True), | ||
var_dtype_and_shape=stats_dtypes_shapes, | ||
chains=chains, | ||
draws=draws, | ||
) | ||
|
||
self.init_sampling_state_group(chains=chains) | ||
|
||
self.straces = [ | ||
ZarrChain( | ||
store=self.root.store, | ||
synchronizer=self.synchronizer, | ||
model=self.model, | ||
vars=self.vars, | ||
test_point=None, | ||
stats_bijection=StatsBijection(step.stats_dtypes), | ||
) | ||
] | ||
for chain, strace in enumerate(self.straces): | ||
strace.setup(draws=draws, chain=chain, sampler_vars=None) | ||
|
||
def close(self): | ||
for strace in self.straces: | ||
strace._posterior.close() | ||
strace._sample_stats.close() | ||
strace._sampling_state.close() | ||
zarr.consolidate_metadata(self.root.store) | ||
self.root.store.close() | ||
|
||
def init_sampling_state_group(self, chains): | ||
state = self.root.create_group(name="_sampling_state", overwrite=True) | ||
sampling_state = state.empty( | ||
name="sampling_state", | ||
overwrite=True, | ||
shape=(chains,), | ||
chunks=(1,), | ||
dtype="object", | ||
object_codec=numcodecs.Pickle(), | ||
) | ||
sampling_state.attrs.update({"_ARRAY_DIMENSIONS": ["chain"]}) | ||
draw_idx = state.array( | ||
name="draw_idx", | ||
overwrite=True, | ||
data=np.zeros(chains, dtype="int"), | ||
chunks=(1,), | ||
dtype="int", | ||
fill_value=-1, | ||
) | ||
draw_idx.attrs.update({"_ARRAY_DIMENSIONS": ["chain"]}) | ||
chain = state.array(name="chain", data=range(chains)) | ||
chain.attrs.update({"_ARRAY_DIMENSIONS": ["chain"]}) | ||
|
||
def init_group_with_empty(self, group, var_dtype_and_shape, chains, draws): | ||
group_coords = {"chain": range(chains), "draw": range(draws)} | ||
for name, (dtype, shape) in var_dtype_and_shape.items(): | ||
fill_value, dtype, object_codec = get_fill_value_and_codec(dtype) | ||
shape = shape or () | ||
array = group.full( | ||
name=name, | ||
dtype=dtype, | ||
fill_value=fill_value, | ||
object_codec=object_codec, | ||
shape=(chains, draws, *shape), | ||
chunks=(1, 1, *shape), | ||
) | ||
try: | ||
dims = self.vars_to_dims[name] | ||
for dim in dims: | ||
group_coords[dim] = self.coords[dim] | ||
except KeyError: | ||
dims = [] | ||
for i, shape_i in enumerate(shape): | ||
dim = f"{name}_dim_{i}" | ||
dims.append(dim) | ||
group_coords[dim] = list(range(shape_i)) | ||
dims = ("chain", "draw", *dims) | ||
array.attrs.update({"_ARRAY_DIMENSIONS": dims}) | ||
for dim, coord in group_coords.items(): | ||
array = group.array(name=dim, data=coord, fill_value=None) | ||
array.attrs.update({"_ARRAY_DIMENSIONS": [dim]}) | ||
return group | ||
|
||
def create_group(self, name, data_dict): | ||
if data_dict: | ||
group_coords = {} | ||
group = self.root.create_group(name=name, overwrite=True) | ||
for var_name, var_value in data_dict.items(): | ||
fill_value, dtype, object_codec = get_fill_value_and_codec(var_value.dtype) | ||
array = group.array( | ||
name=var_name, | ||
data=var_value, | ||
fill_value=fill_value, | ||
dtype=dtype, | ||
object_codec=object_codec, | ||
) | ||
try: | ||
dims = self.vars_to_dims[var_name] | ||
for dim in dims: | ||
group_coords[dim] = self.coords[dim] | ||
except KeyError: | ||
dims = [] | ||
for i in range(var_value.ndim): | ||
dim = f"{var_name}_dim_{i}" | ||
dims.append(dim) | ||
group_coords[dim] = list(range(var_value.shape[i])) | ||
array.attrs.update({"_ARRAY_DIMENSIONS": dims}) | ||
for dim, coord in group_coords.items(): | ||
array = group.array(name=dim, data=coord, fill_value=None) | ||
array.attrs.update({"_ARRAY_DIMENSIONS": [dim]}) | ||
return group | ||