Skip to content

Commit

Permalink
feat: Data Structure update for Dynamo Registry
Browse files Browse the repository at this point in the history
- Add custom class overriding default Dictionary class to access
converters from various registries
- Add new dictionary type `Dict[Target, Sequence[ConverterSupport]]` as
well as ConverterSupport class which stores a converter and its
validation implementation
- Add unified `DYNAMO_CONVERTERS` dictionary which coalesces both the FX
and Dynamo converter dictionaries and acts as a single unified
dictionary
- Streamline dictionary accesses via get/contains accessors
- Add priority converter decorator enum to prioritize user-provided
converters and name argument checking "capability validation" to clarify
utility
- Add boilerplate `no_dynamic` converter capability validator for easy
use in specifying converters as not-able to handle dynamic shapes
  • Loading branch information
gs-olive committed Jul 7, 2023
1 parent 4239a7b commit 53378e9
Show file tree
Hide file tree
Showing 4 changed files with 352 additions and 16 deletions.
11 changes: 6 additions & 5 deletions py/torch_tensorrt/dynamo/backend/lowering/_partition.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import logging
from typing import Dict, List, Optional, Sequence, Set
from typing import Callable, Dict, List, Optional, Sequence, Set

import torch

Expand Down Expand Up @@ -55,6 +55,10 @@ def __init__(
)

self.min_block_size = min_block_size
logger.debug(
"Initialized Capability-Based Partitioner with available Converters:\n"
+ f"{CONVERTERS.display_all_available_converters()}"
)

def propose_partitions(self) -> List[Partition]:
# Propose partitions using the default, then refine the results
Expand Down Expand Up @@ -123,10 +127,7 @@ def is_node_supported(
else node.target
)

if (
node.target in CONVERTERS.keys()
and node_name not in self.torch_executed_ops
):
if node in CONVERTERS and node_name not in self.torch_executed_ops:
# If node is a proper, supported computational node, store the operator
if not node.is_impure():
self.supported_operators.add(node_name)
Expand Down
30 changes: 30 additions & 0 deletions py/torch_tensorrt/dynamo/common_utils/converter_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
import torch


def dynamic_unsupported(node: torch.fx.Node) -> bool:
# Validate that none of the inputs to the node have Dynamic shapes
assert isinstance(
node, torch.fx.Node
), "Inputs to validator functions must be FX Nodes"

# Check node value itself
if node.meta["val"]._has_symbolic_sizes_strides:
return False

# Check node arguments individually
if any(
arg.meta["val"]._has_symbolic_sizes_strides
for arg in node.args
if isinstance(arg, torch.fx.Node)
):
return False

# Check node keyword arguments individually
if any(
kwarg.meta["val"]._has_symbolic_sizes_strides
for kwarg in node.kwargs.values()
if isinstance(kwarg, torch.fx.Node)
):
return False

return True
312 changes: 308 additions & 4 deletions py/torch_tensorrt/dynamo/converter_registry.py
Original file line number Diff line number Diff line change
@@ -1,23 +1,327 @@
from typing import Any, Callable, Dict
from dataclasses import dataclass, field
from typing import Any, Callable, Dict, Optional, Sequence, Union
from enum import Enum, auto

from torch.fx.node import Target
from torch.fx.node import Target, Node, _get_qualified_name
from torch_tensorrt.fx.converter_registry import CONVERTERS

DYNAMO_CONVERTERS: Dict[Target, Any] = dict(CONVERTERS)

class ConverterPriority(Enum):
"""Enum to set a converter's priority in the registry"""

STANDARD = auto()
HIGH = auto()


@dataclass(frozen=True)
class ConverterSupport:
"""Class representing a converter implementation and support function
Args:
converter_implementation: Function which converts said node to a TRT equivalent
capability_validator: Function which takes in a Node and returns a bool indicating
whether that node can be supported by its companion converter. Note that
this function must not modify the node or its graph
"""

converter_implementation: Callable
capability_validator: Callable[[Node], bool] = field(default=lambda node: True)


# Dictionary representing Dynamo aten-only converters
# Each converter maps to a sequence of at least one ConverterSupport object(s)
DYNAMO_ATEN_CONVERTERS: Dict[Target, Sequence[ConverterSupport]] = {}


def dynamo_tensorrt_converter(
key: Target,
enabled: bool = True,
capability_validator: Optional[Callable[[Node], bool]] = None,
priority: ConverterPriority = ConverterPriority.STANDARD,
) -> Callable[[Any], Any]:
"""Decorator for Dynamo TensorRT Converter
Registers the decorated function in the DYNAMO_ATEN_CONVERTERS registry
Args:
key: Node target for which the converter is implemented for
(for example, torch.ops.add.Tensor)
enabled: Whether the converter should be enabled/cached or not
capability_validator: Function which evaluates whether a node is valid for conversion
by the decorated converter. See ConverterSupport for more details.
Defaults to None, implying the capability_validator function is always true -
this means all nodes of "key" kind can be supported by this converter
priority: Converter's level of priority relative to other converters with the
same target
Returns:
The converter being decorated
"""

def register_converter(converter):
DYNAMO_CONVERTERS[key] = converter
"""Helper function to register the converter, then return it"""
assert callable(converter), "Converter function must be callable"

# If no capability_validator function is specified, use the default function - always return true
if capability_validator is None:
converter_support = ConverterSupport(converter_implementation=converter)
else:
assert callable(
capability_validator
), "Argument checking function must be callable"
converter_support = ConverterSupport(
converter_implementation=converter,
capability_validator=capability_validator,
)

# If a converter for this operator already exists, append the new converter to the list
# Otherwise, start a new list
if key in DYNAMO_ATEN_CONVERTERS:
# High priority converters are inserted at the front of the list,
# so they can be checked first by the registry
if priority is ConverterPriority.HIGH:
DYNAMO_ATEN_CONVERTERS[key].insert(0, converter_support)
else:
DYNAMO_ATEN_CONVERTERS[key].append(converter_support)
else:
DYNAMO_ATEN_CONVERTERS[key] = [converter_support]

return converter

def disable_converter(converter):
return converter

# Select whether to cache/enable the converter
if enabled:
return register_converter
else:
return disable_converter


class ConverterRegistry:
"""Registry for storing multiple converter dictionaries
Capable of storing dictionaries with the following signature:
Dict[Target, Union[Callable, Sequence[ConverterSupport]]]
Also able to validate converter implementations against user-provided
argument-checking functions
Args:
registries: List of dictionaries representing converter registries.
The order of the provided dictionaries is the order in which they
will be traversed. This is only significant when using non-validated
methods.
"""

def __init__(
self,
registries: Sequence[Dict[Target, Union[Callable, Sequence[ConverterSupport]]]],
registry_names: Optional[Sequence[str]] = None,
):
# Copy reference to each dictionary object into attribute list
self.registries = [registry for registry in registries]

if registry_names is not None:
assert len(self.registries) == len(registry_names)
self.registry_names = [name for name in registry_names]
else:
self.registry_names = [
f"Registry {i + 1}" for i in range(len(self.registries))
]

self.validate_invariants()

def validate_invariants(self):
"""Validates the invariants required of the dictionaries in the registries
Raises AssertionError if any invariants have been violated
"""
# All registries must be dictionaries
assert all(isinstance(elt, dict) for elt in self.registries)

# Every dictionary in the registry must have one of two signatures:
# Dict[Target, Callable] or Dict[Target, Sequence[ConverterSupport]]
# Where, for the latter, the sequence must be non-empty
for registry in self.registries:
for converters in registry.values():
if isinstance(converters, (list, tuple)):
assert (
all(isinstance(c, ConverterSupport) for c in converters)
and len(converters) > 0
)
else:
assert callable(converters), "Converter function must be callable"

def __getitem_without_validation__(self, key: Target):
"""Get the first-found converter in any registry
Searches all registries in order and returns the first converter encountered
"""
if isinstance(key, Node):
raise KeyError(
"Unvalidated accesses to the Converter registry can only be "
+ "made with node targets. Try accessing the registry with node.target"
)

self.validate_invariants()

# Iterate over all registries and return the first converter found
for registry in self.registries:
if key in registry:
converters = registry[key]

if isinstance(converters, (list, tuple)):
return converters[0].converter_implementation
else:
return converters

raise KeyError(f"None of the converter registries have an entry for {key}")

def __getitem__(self, node: Node):
"""Get the first-found validated converter in any registry
Searches all registries in order and returns the first converter
which passes validation on the input node
"""
if not isinstance(node, Node):
raise KeyError(
"Validated accesses to the Converter registry can only be "
+ "made with node inputs. Try accessing the registry with a node "
+ "or use get_unvalidated to access without node validation."
)

self.validate_invariants()
key = node.target

# Iterate over all registries, validating the converter on the input node
# If no capability_validator function is found, assume full coverage
for registry in self.registries:
if key in registry:
converters = registry[key]

if isinstance(converters, (list, tuple)):
for candidate in converters:
if candidate.capability_validator(node):
return candidate.converter_implementation
else:
return converters

raise KeyError(
f"None of the converter registries have a validated entry for {key}, with node {node}"
)

def keys(self):
"""Get all unique targets across all dictionaries"""
return self.unique_targets()

def get_unvalidated(self, key: Target, value=None):
"""Get unvalidated converter for input target with a default return"""
try:
return self.__getitem_without_validation__(key)
except KeyError:
return value

def get(self, node: Node, value=None):
"""Get validated converter for input node with a default return"""
try:
return self.__getitem__(node)
except KeyError:
return value

def __contains__(self, key: Union[Target, Node]):
"""Check whether a converter for an input node or target exists"""
try:
# Attempt to access the item in the registry
if isinstance(key, Node):
self.__getitem__(key)
else:
self.__getitem_without_validation__(key)

return True
except KeyError:
return False

def get_all_converters_with_target(
self, key: Target, return_registry_info: bool = False
):
"""Get all converters across all registries for the target
Returns a list of all converterts having the specified target
"""
self.validate_invariants()
converters_with_target = []

# Store count of number of registered converters per registry
if return_registry_info:
registry_data = {name: 0 for name in self.registry_names}

for index, registry in enumerate(self.registries):
if key in registry:
converters = registry[key]

if isinstance(converters, (list, tuple)):
converters_with_target.extend(
[c.converter_implementation for c in converters]
)
# Add converter count to registry name storage
if return_registry_info:
registry_data[self.registry_names[index]] += len(converters)
else:
converters_with_target.append(converters)
# Add converter count to registry name storage
if return_registry_info:
registry_data[self.registry_names[index]] += 1

if return_registry_info:
return converters_with_target, registry_data
else:
return converters_with_target

def __setitem__(self, key, value):
raise AssertionError(
f"Do not set registry members directly through the ConverterRegistry object. "
+ f"Attempted to set {key}: {value} via direct assignment to ConverterRegistry."
)

def __delitem__(self, key):
raise AssertionError(
f"Do not delete registry members directly through the ConverterRegistry object. "
+ f"Attempted to delete {key} via direct del on ConverterRegistry."
)

def __len__(self):
"""Returns the sum of lengths of all registries stored"""
return sum(len(registry) for registry in self.registries)

def unique_targets(self):
"""Returns the set of unique converter targets stored across all registries"""
return set.union(*[set(registry.keys()) for registry in self.registries])

def qualified_name_or_str(self, target: Target) -> str:
"""Returns string representation of an FX Node target"""
if isinstance(target, str):
return target
else:
return _get_qualified_name(target)

def display_all_available_converters(self) -> str:
"""Returns a string with all converters and their source, separated by newlines"""
available_converters = "Available converters in ATen registries with counts:\n"

for target in sorted(
self.unique_targets(), key=lambda target: self.qualified_name_or_str(target)
):
_, registry_data = self.get_all_converters_with_target(
target, return_registry_info=True
)
available_converters += f"Node: {self.qualified_name_or_str(target)} - Registry Presence Counts: {registry_data}\n"

return available_converters


# Initialize dynamo converter registry with the FX and Dynamo aten registries
# Note the Dynamo registry is listed first, for precedence
DYNAMO_CONVERTERS: ConverterRegistry = ConverterRegistry(
[DYNAMO_ATEN_CONVERTERS, CONVERTERS],
["Dynamo ATen Converters Registry", "FX ATen Converters Registry"],
)
Loading

0 comments on commit 53378e9

Please sign in to comment.