Skip to content

Commit

Permalink
Update conjectural SIP
Browse files Browse the repository at this point in the history
  • Loading branch information
rahulc29 committed Dec 21, 2023
1 parent 15082c6 commit 04db06c
Showing 1 changed file with 40 additions and 2 deletions.
42 changes: 40 additions & 2 deletions src/Realizability/Assembly/SIP.agda
Original file line number Diff line number Diff line change
@@ -1,10 +1,17 @@
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence
open import Cubical.Functions.FunExtEquiv
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation
open import Realizability.CombinatoryAlgebra

module Realizability.Assembly.SIP {ℓ} {A : Type ℓ} (ca : CombinatoryAlgebra A) where

open CombinatoryAlgebra ca
open Realizability.CombinatoryAlgebra.Combinators ca renaming (i to Id; ia≡a to Ida≡a)
open import Realizability.Assembly.Base ca
open import Realizability.Assembly.Morphism ca

Expand All @@ -14,4 +21,35 @@ AssemblyStr X = AssemblyΣ X

AssemblyStrEquiv : StrEquiv AssemblyStr _
AssemblyStrEquiv =
λ { (X , isSetX , _⊩X_ , ⊩Xsurjective) (Y , isSetY , _⊩Y_ , ⊩Ysurjective) e {!!} }
λ {
(X , isSetX , _⊩X_ , ⊩Xsurjective)
(Y , isSetY , _⊩Y_ , ⊩Ysurjective) e
(( (x : X) (a : A) (a⊩x : ⟨ a ⊩X x ⟩) ⟨ a ⊩Y (equivFun e x) ⟩)) ×
(∃[ eFibers ∈ A ] ( (y : Y) (b : A) (b⊩y : ⟨ b ⊩Y y ⟩) ⟨ (eFibers ⨾ b) ⊩X (equivCtr e y .fst) ⟩)) }

AssemblyStrEquiv→PathP : {X Y : TypeWithStr ℓ AssemblyStr} (e : ⟨ X ⟩ ≃ ⟨ Y ⟩) AssemblyStrEquiv X Y e PathP (λ i AssemblyStr (ua e i)) (str X) (str Y)
AssemblyStrEquiv→PathP {X} {Y} e strEquiv i =
(isProp→PathP {B = λ j isSet (ua e j)} (λ j isPropIsSet) (X .snd .fst) (Y .snd .fst) i) ,
funExt
(λ a
funExtDep
{A = λ j ua e j}
{B = λ j α hProp ℓ}
{f = X .snd .snd .fst a}
{g = Y .snd .snd .fst a}
λ {x} {y} p
Σ≡Prop
(λ A isPropIsProp {A = A})
(hPropExt
(X .snd .snd .fst a x .snd)
(Y .snd .snd .fst a y .snd)
(λ a⊩x
subst
(λ y Y .snd .snd .fst a y .fst)
(sym (uaβ e x) ∙ (λ j fromPathP (transport-filler (ua e) x) j) ∙ fromPathP p)
(strEquiv .fst x a a⊩x))
λ a⊩y subst (λ x X .snd .snd .fst a x .fst) {!!} {!!})) i ,
λ u {!!}

AssemblyStrUnivalent : UnivalentStr AssemblyStr AssemblyStrEquiv
AssemblyStrUnivalent {A = X} {B = Y} e = {!!}

0 comments on commit 04db06c

Please sign in to comment.