Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Rahul Chhabra authored and Rahul Chhabra committed Dec 18, 2023
1 parent 37af59e commit 995eef2
Show file tree
Hide file tree
Showing 6 changed files with 41 additions and 5 deletions.
16 changes: 15 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,14 +36,28 @@ December 2023:
- [ ] Exact completion
- [x] Internal equivalence relations of a category
- [ ] Functional relations
- [ ] Tripos
- [x] Heyting-valued Predicates
- [x] $\forall$ and $\exists$ are adjoints
- [x] Beck-Chevalley condition
- [ ] Heyting prealgebra structure
- [ ] Interpret intuitionistic logic

# Code Organisation

- At the highest level, we have combinatory algebra machinery
- Most modules are parameterised by a combinatory algebra `ca : CombinatoryAlgebra A`
- There are modules on the category of assemblies in `Realizability.Assembly`
- Lemmas and stuff relating to the regularity of $\mathsf{Asm}$ is found in `Realizability.Assembly.Regular`
- Tripos modules are to be found in `Realizability.Tripos`

# Writing

There are some notes relating to the project on my [abstract non-sense](https://github.com/rahulc29/abstract-nonsense) repository.

# Build Instructions

You will need Agda >= 2.6.3 and a [custom fork](https://github.com/rahulc29/cubical/tree/rahulc29/realizability) of the Cubical library to build the code.
You will need Agda >= 2.6.4 and a [custom fork](https://github.com/rahulc29/cubical/tree/rahulc29/realizability) of the Cubical library to build the code.

The custom fork has a few additional definitions in the category theory modules. I will hopefully integrate them into the Cubical library.

10 changes: 7 additions & 3 deletions src/Realizability/Assembly/Base.agda
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
{-# OPTIONS --cubical #-}
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Reflection.RecordEquiv
open import Realizability.CombinatoryAlgebra

Expand All @@ -18,9 +20,11 @@ module Realizability.Assembly.Base {ℓ} {A : Type ℓ} (ca : CombinatoryAlgebra
AssemblyΣ : Type ℓ Type _
AssemblyΣ X =
Σ[ isSetX ∈ isSet X ]
Σ[ _⊩_ ∈ (A X Type ℓ) ]
Σ[ ⊩isPropValued ∈ ( a x isProp (a ⊩ x)) ]
( x ∃[ a ∈ A ] a ⊩ x)
Σ[ _⊩_ ∈ (A X hProp ℓ) ]
( x ∃[ a ∈ A ] ⟨ a ⊩ x ⟩)

isSetAssemblyΣ : X isSet (AssemblyΣ X)
isSetAssemblyΣ X = isSetΣ (isProp→isSet isPropIsSet) λ isSetX isSetΣ (isSetΠ (λ a isSetΠ λ x isSetHProp)) λ _⊩_ isSetΠ λ x isProp→isSet isPropPropTrunc

unquoteDecl AssemblyIsoΣ = declareRecordIsoΣ AssemblyIsoΣ (quote Assembly)

Expand Down
1 change: 1 addition & 0 deletions src/Realizability/Assembly/Path.agda
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ open import Cubical.Categories.Category
module Realizability.Assembly.Path {ℓ} {A : Type ℓ} (ca : CombinatoryAlgebra A) where

open CombinatoryAlgebra ca
open Realizability.CombinatoryAlgebra.Combinators ca renaming (i to Id; ia≡a to Ida≡a; P to PCombinator)
open import Realizability.Assembly.Base ca
open import Realizability.Assembly.Morphism ca

Expand Down
Empty file.
2 changes: 1 addition & 1 deletion src/Realizability/Assembly/Regular/Cobase.agda
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ module
(s ⨾ (s ⨾ (k ⨾ pair) ⨾ (s ⨾ (k ⨾ b) ⨾ (s ⨾ (k ⨾ f~) ⨾ Id))) ⨾ Id ,
λ z zᵣ zᵣ⊩z
do
return ({!!} , {!!}))
return ({!!} , {!!} , {!!}))

module _ (cl : CharLemma) where
open ASMKernelPairs
Expand Down
17 changes: 17 additions & 0 deletions src/Realizability/Assembly/SIP.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.SIP
open import Realizability.CombinatoryAlgebra

module Realizability.Assembly.SIP {ℓ} {A : Type ℓ} (ca : CombinatoryAlgebra A) where

open import Realizability.Assembly.Base ca
open import Realizability.Assembly.Morphism ca


AssemblyStr : (X : Type ℓ) Type _
AssemblyStr X = AssemblyΣ X

AssemblyStrEquiv : StrEquiv AssemblyStr _
AssemblyStrEquiv =
λ { (X , isSetX , _⊩X_ , ⊩Xsurjective) (Y , isSetY , _⊩Y_ , ⊩Ysurjective) e {!!} }

0 comments on commit 995eef2

Please sign in to comment.