Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: replace pandas apply with more efficient means (#655) #684

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions docs/sources/CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,10 @@ The CHANGELOG for the current development version is available at

- Implemented both `use_clones` and `fit_base_estimators` (previously `refit` in `EnsembleVoteClassifier`) for `EnsembleVoteClassifier` and `StackingClassifier`. ([#670](https://github.com/rasbt/mlxtend/pull/670) via [Katrina Ni](https://github.com/nilichen))

- Improve the runtime performance for apriori function and tests by replacing pandas' .apply with numpy's vectorize as the data show vectorize is faster than apply for the current use. ([#655](https://github.com/rasbt/mlxtend/pull/655) via [Kyle Yang](https://github.com/keyanyang))

- Improve the efficiency for generate_itemsets function by replacing Python lists with Numpy's arrays and replacing iterative division with array division. ([#655](https://github.com/rasbt/mlxtend/pull/655) via [Kyle Yang](https://github.com/keyanyang))

##### Bug Fixes

- Fix axis DeprecationWarning in matplotlib v3.1.0 and newer. ([#673](https://github.com/rasbt/mlxtend/pull/673))
Expand Down
4 changes: 2 additions & 2 deletions mlxtend/frequent_patterns/apriori.py
Original file line number Diff line number Diff line change
Expand Up @@ -324,8 +324,8 @@ def _support(_x, _n_rows, _is_sparse):
res_df.columns = ['support', 'itemsets']
if use_colnames:
mapping = {idx: item for idx, item in enumerate(df.columns)}
res_df['itemsets'] = res_df['itemsets'].apply(lambda x: frozenset([
mapping[i] for i in x]))
res_df['itemsets'] = [frozenset(a) for a in np.vectorize(map)(
mapping.get, res_df['itemsets'])]
res_df = res_df.reset_index(drop=True)

if verbose:
Expand Down
15 changes: 8 additions & 7 deletions mlxtend/frequent_patterns/fpcommon.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,18 +59,19 @@ def setup_fptree(df, min_support):


def generate_itemsets(generator, num_itemsets, colname_map):
itemsets = []
supports = []
itemsets = np.array([])
supports = np.array([])
for sup, iset in generator:
itemsets.append(frozenset(iset))
supports.append(sup / num_itemsets)
itemsets = np.append(itemsets, frozenset(iset))
supports = np.append(supports, sup)

supports = np.divide(supports, num_itemsets)

res_df = pd.DataFrame({'support': supports, 'itemsets': itemsets})

if colname_map is not None:
res_df['itemsets'] = res_df['itemsets'] \
.apply(lambda x: frozenset([colname_map[i] for i in x]))

res_df['itemsets'] = [frozenset(a) for a in np.vectorize(map)(
colname_map.get, res_df['itemsets'])]
return res_df


Expand Down
18 changes: 8 additions & 10 deletions mlxtend/frequent_patterns/tests/test_association_rules.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,10 +26,8 @@

def test_default():
res_df = association_rules(df_freq_items)
res_df['antecedents'] = res_df['antecedents'].apply(
lambda x: str(frozenset(x)))
res_df['consequents'] = res_df['consequents'].apply(
lambda x: str(frozenset(x)))
res_df['antecedents'] = np.vectorize(str)(res_df['antecedents'])
res_df['consequents'] = np.vectorize(str)(res_df['consequents'])
res_df.sort_values(columns_ordered, inplace=True)
res_df.reset_index(inplace=True, drop=True)

Expand All @@ -46,10 +44,10 @@ def test_default():
columns=columns_ordered
)

expect['antecedents'] = expect['antecedents'].apply(
lambda x: str(frozenset(x)))
expect['consequents'] = expect['consequents'].apply(
lambda x: str(frozenset(x)))
expect['antecedents'] = np.vectorize(str)(
np.vectorize(frozenset)(expect['antecedents']))
expect['consequents'] = np.vectorize(str)(
np.vectorize(frozenset)(expect['consequents']))
expect.sort_values(columns_ordered, inplace=True)
expect.reset_index(inplace=True, drop=True)

Expand All @@ -68,8 +66,8 @@ def test_datatypes():
# check if association_rule converts it internally
# back to frozensets
df_freq_items_copy = df_freq_items.copy()
df_freq_items_copy['itemsets'] = df_freq_items_copy['itemsets']\
.apply(lambda x: set(x))
df_freq_items_copy['itemsets'] = np.vectorize(set)(
df_freq_items_copy['itemsets'])

res_df = association_rules(df_freq_items)
for i in res_df['antecedents']:
Expand Down
4 changes: 2 additions & 2 deletions mlxtend/frequent_patterns/tests/test_fpbase.py
Original file line number Diff line number Diff line change
Expand Up @@ -201,11 +201,11 @@ def test_default(self):

def test_max_len(self):
res_df1 = self.fpalgo(self.df)
max_len = np.max(res_df1['itemsets'].apply(len))
max_len = np.vectorize(len)(res_df1['itemsets']).max()
assert max_len == 3

res_df2 = self.fpalgo(self.df, max_len=2)
max_len = np.max(res_df2['itemsets'].apply(len))
max_len = np.vectorize(len)(res_df2['itemsets']).max()
assert max_len == 2

def test_low_memory_flag(self):
Expand Down
4 changes: 2 additions & 2 deletions mlxtend/frequent_patterns/tests/test_fpmax.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,11 +32,11 @@ def test_default(self):

def test_max_len(self):
res_df1 = fpmax(self.df)
max_len = np.max(res_df1['itemsets'].apply(len))
max_len = np.vectorize(len)(res_df1['itemsets']).max()
assert max_len == 3

res_df2 = fpmax(self.df, max_len=2)
max_len = np.max(res_df2['itemsets'].apply(len))
max_len = np.vectorize(len)(res_df2['itemsets']).max()
assert max_len == 2


Expand Down