Skip to content

A curated list of papers applying Reinforcement Learning to Computer Vision

Notifications You must be signed in to change notification settings

rayanramoul/RLCV-Papers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 

Repository files navigation

( Reinforcement Learning + Computer Vision ) Papers

A curated list of papers applying Reinforcement Learning to Computer Vision tasks.

Summary

Image Instance Segmentation

1985:

1992 :

2006 :

  • Farhang Sahba, Hamid R Tizhoosh, and Magdy MA Salama. A reinforcement learning framework for medical image segmentation. In The 2006 IEEE International Joint Conference on Neural Network Proceedings, pages 511–517. IEEE : https://ieeexplore.ieee.org/document/1716136
  • Leo Grady. Random walks for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 28(11):1768–1783 : https://ieeexplore.ieee.org/document/1704833

2007 :

2015 :

2016 :

  • Md Reza, Jana Kosecka, et al. Reinforcement learning for semantic segmentation in indoor scenes. arXiv preprint arXiv:1606.01178, : https://arxiv.org/abs/1606.01178
  • Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International conference on machine learning, pages 1928–1937: http://proceedings.mlr.press/v48/mniha16.pdf

2017 :

2018 :

2020 :

Object Tracking

2005 :

2015 :

  • Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 : https://arxiv.org/abs/1509.02971
  • Yu Xiang, Alexandre Alahi, and Silvio Savarese. Learning to track: Online multi-object tracking by decision making. In Proceedings of the IEEE international conference on computer vision, pages 4705–4713 : https://cvgl.stanford.edu/papers/xiang_iccv15.pdf

2016 :

  • Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International conference on machine learning, pages 1928–1937: https://proceedings.mlr.press/v48/mniha16.html

2017 :

  • Wenhan Luo, Peng Sun, Fangwei Zhong, Wei Liu, Tong Zhang, and Yizhou Wang. End-to-end active object tracking via reinforcement learning. arXiv preprint arXiv:1705.10561 : https://arxiv.org/abs/1705.10561
  • Da Zhang, Hamid Maei, Xin Wang, and Yuan-Fang Wang. Deep reinforcement learning for visual object tracking in videos. arXiv preprint arXiv:1701.08936 : https://arxiv.org/pdf/1701.08936.pdf

2018 :


 2019 :

  • Matteo Dunnhofer, Niki Martinel, Gian Luca Foresti, and Christian Micheloni. Visual tracking by means of deep reinforcement learning and an expert demonstrator. In Proceedings of the IEEE International Conference on Computer Vision Workshops : https://arxiv.org/abs/1909.08487
  • Mingxin Jiang, Tao Hai, Zhigeng Pan, Haiyan Wang, Yinjie Jia, and Chao Deng. Multi-agent deep reinforcement learning for multi-object tracker. IEEE Access, 7:32400–32407 : https://ieeexplore.ieee.org/document/8653482

Object Detection

2012 :

2015 :

  • Juan C Caicedo and Svetlana Lazebnik. Active object localization with deep reinforcement learning. In Proceedings of the IEEE international conference on computer vision, pages 2488–2496 : https://arxiv.org/abs/1511.06015

2016 :

2017 :

  • Gabriel Maicas, Gustavo Carneiro, Andrew P Bradley, Jacinto C Nascimento, and Ian Reid. Deep reinforcement learning for active breast lesion detection from dce-mri. In International conference on medical image computing and computer-assisted intervention, pages 665–673. Springer : https://cs.adelaide.edu.au/~gabriel/DRL_maicasEtAl.pdf

2018 :

2020 :

  • Burak Uzkent, Christopher Yeh, and Stefano Ermon. Efficient object detection in large images using deep reinforcement learning. In The IEEE Winter Conference on Applications of Computer Vision, pages 1824–1833 : https://arxiv.org/abs/1912.03966
  • Fernando Navarro, Anjany Sekuboyina, Diana Waldmannstetter, Jan C Peeken, Stephanie E Combs, and Bjoern H Menze. Deep reinforcement learning for organ localization in ct. arXiv preprint arXiv:2005.04974 :
  • Lijie Liu, Chufan Wu, Jiwen Lu, Lingxi Xie, Jie Zhou, and Qi Tian. Reinforced axial refinement network for monocular 3d object detection. In European Conference on Computer Vision ECCV, pages 540–556 : https://arxiv.org/abs/2008.13748

Image Registration

2000 :

2013 :

2016 :

  • Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International conference on machine learning, pages 1928–1937 : https://proceedings.mlr.press/v48/mniha16.html

2017 :

2018 :

  • Shanhui Sun, Jing Hu, Mingqing Yao, Jinrong Hu, Xiaodong Yang, Qi Song, and Xi Wu. Robust multimodal image registration using deep recurrent reinforcement learning. In Asian Conference on Computer Vision, pages 511–526. Springer : https://arxiv.org/abs/2002.03733

Video Analysis

2015 :

2016 :

2018 :

  • Daochang Liu and Tingting Jiang. Deep reinforcement learning for surgical gesture segmentation and classification. In International conference on medical image computing and computer-assisted intervention, pages 247–255. Springer : https://arxiv.org/abs/1806.08089
  • Junwei Han, Le Yang, Dingwen Zhang, Xiaojun Chang, and Xiaodan Liang. Reinforcement cutting-agent learning for video object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9080–9089, 2018.
  • Vikash Goel, Jameson Weng, and Pascal Poupart. Unsupervised video object segmentation for deep reinforcement learning. In Advances in Neural Information Processing Systems, pages 5683–5694 : https://arxiv.org/abs/1805.07780
  • Yansong Tang, Yi Tian, Jiwen Lu, Peiyang Li, and Jie Zhou. Deep progressive reinforcement learning for skeleton-based action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5323–5332 : https://openaccess.thecvf.com/content_cvpr_2018/papers/Tang_Deep_Progressive_Reinforcement_CVPR_2018_paper.pdf
  • Kaiyang Zhou, Yu Qiao, and Tao Xiang. Deep reinforcement learning for unsupervised video summarization with diversity-representativeness reward. In Thirty-Second AAAI Conference on Artificial Intelligence : https://arxiv.org/abs/1801.00054
  • Kaiyang Zhou, Tao Xiang, and Andrea Cavallaro. Video summarisation by classification with deep reinforcement learning. arXiv preprint arXiv:1807.03089 : https://arxiv.org/abs/1807.03089

2020 :

Landmark Detection

2010 :

  • Antonio Criminisi, Jamie Shotton, Duncan Robertson, and Ender Konukoglu. Regression forests for efficient anatomy detection and localization in ct studies. In International MICCAI Workshop on Medical Computer Vision, pages 106–117. Springer, 2010.

2015 :

2016 :

  • Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International conference on machine learning, pages 1928–1937 : https://proceedings.mlr.press/v48/mniha16.html

2017 :

  • Florin-Cristian Ghesu, Bogdan Georgescu, Yefeng Zheng, Sasa Grbic, Andreas Maier, Joachim Hornegger, and Dorin Comaniciu. Multi-scale deep reinforcement learning for real-time 3d-landmark detection in ct scans. IEEE transactions on pattern analysis and machine intelligence, 41(1):176–189, 2017 : https://pubmed.ncbi.nlm.nih.gov/29990011/

2019 :

  • Amir Alansary, Ozan Oktay, Yuanwei Li, Loic Le Folgoc, Benjamin Hou, Ghislain Vaillant, Konstantinos Kamnitsas, Athanasios Vlontzos, Ben Glocker, Bernhard Kainz, et al. Evaluating reinforcement learning agents for anatomical landmark detection. Medical image analysis, 53:156–164 : https://pubmed.ncbi.nlm.nih.gov/30784956/
  • Walid Abdullah Al and Il Dong Yun. Partial policy-based reinforcement learning for anatomical landmark localization in 3d medical images. IEEE transactions on medical imaging : https://ieeexplore.ieee.org/abstract/document/8863403
  • Athanasios Vlontzos, Amir Alansary, Konstantinos Kamnitsas, Daniel Rueckert, and Bernhard Kainz. Multiple landmark detection using multi-agent reinforcement learning. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 262–270. Springer : https://arxiv.org/abs/1907.00318

Survey

2021

Contribute

A paper is missing ? don't hesitate to open an issue or pull-request to keep the repository updated 😊

About

A curated list of papers applying Reinforcement Learning to Computer Vision

Topics

Resources

Stars

Watchers

Forks