Skip to content

Commit

Permalink
Add readme specific to python egobox binding
Browse files Browse the repository at this point in the history
  • Loading branch information
relf committed Jan 4, 2025
1 parent cef2f80 commit bee1a1f
Show file tree
Hide file tree
Showing 2 changed files with 46 additions and 0 deletions.
1 change: 1 addition & 0 deletions python/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ edition.workspace = true
homepage.workspace = true
description = "A python binding for egobox crates"
repository = "https://github.com/relf/egobox/python"
readme = "README.md"

[lib]
name = "egobox"
Expand Down
45 changes: 45 additions & 0 deletions python/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
# EGObox - Efficient Global Optimization toolbox

[![pytests](https://github.com/relf/egobox/workflows/pytest/badge.svg)](https://github.com/relf/egobox/actions?query=workflow%3Apytest)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.04737/status.svg)](https://doi.org/10.21105/joss.04737)

`egobox` package is the Python binding of the optimizer named `Egor` and the surrogate model `Gpx`, mixture of Gaussian processes, from the [EGObox libraries](https://github.com/relf/egobox?tab=readme-ov-file#egobox---efficient-global-optimization-toolbox) written in Rust.

## Installation

```bash
pip install egobox
```

### Egor optimizer

```python
import numpy as np
import egobox as egx

# Objective function
def f_obj(x: np.ndarray) -> np.ndarray:
return (x - 3.5) * np.sin((x - 3.5) / (np.pi))

# Minimize f_opt in [0, 25]
res = egx.Egor(egx.to_specs([[0.0, 25.0]]), seed=42).minimize(f_obj, max_iters=20)
print(f"Optimization f={res.y_opt} at {res.x_opt}") # Optimization f=[-15.12510323] at [18.93525454]
```

### Gpx surrogate model

```python
import numpy as np
import egobox as egx

# Training
xtrain = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
ytrain = np.array([0.0, 1.0, 1.5, 0.9, 1.0])
gpx = egx.Gpx.builder().fit(xtrain, ytrain)

# Prediction
xtest = np.linspace(0, 4, 20).reshape((-1, 1))
ytest = gpx.predict(xtest)
```

See the [tutorial notebooks](https://github.com/relf/egobox/tree/master/doc/README.md) and [examples folder](https://github.com/relf/egobox/tree/d9db0248199558f23d966796737d7ffa8f5de589/python/egobox/examples) for more information on the usage of the optimizer and mixture of Gaussian processes surrogate model.

0 comments on commit bee1a1f

Please sign in to comment.